IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v115y2024ics0969699724000139.html
   My bibliography  Save this article

Airline delay propagation: Estimation and modeling in daily operations

Author

Listed:
  • Erdem, Furkan
  • Bilgiç, Taner

Abstract

Airline companies try to increase their revenues, service level, and customer satisfaction in a highly competitive global sector. Airline schedule planning is crucial for airline companies to reach these objectives. Airline schedules are usually constructed assuming that there will be no disruption. But in reality, there are plenty of incidences such as weather conditions, mechanical failure, air traffic, and security issues that cause delays and disrupt daily operations. Even though it is impossible to avoid the delay completely, there are ways to decrease the propagation of the delay. To cope with delay propagation, airlines insert idle time, known as slack, between flights in the schedule. However, idle time means inefficient use of aircraft resources. Thus, adjusting the idle time in the schedule dynamically during daily operations is a critical task for planning departments. In this study, flight time rescheduling and aircraft swapping are used to decrease the expected delay propagation. By using these two options, the scheduled slack is clustered at flights that are prone to delay propagation. We aim to reduce the negative consequences of delay proactively while keeping the total slack constant in the schedule. Keeping the slack constant helps reduce other adverse network effects and enables the rest of the plan to be still intact for the future. We propose to use multivariate kernel density estimation to estimate the probability of independent delay from flight data and argue that this is a practical and effective way of estimating such distributions for daily airline operations. We use that estimation in two mathematical programming formulations: the single layer model, and the single layer model with aircraft swapping option to minimize the expected propagated delay. Since the latter model is a non-linear model, we also introduce an approximation for it to overcome the computational issues in solving large instances of the problem. After illustrating our approach on a small set of data, we report our computational results using flight schedule data from Turkish Airlines augmented with weather related information. We argue that the proposed models help decrease the expected delay propagation by up to 90% allowing a 15-min change in the schedule and swapping aircraft when necessary.

Suggested Citation

  • Erdem, Furkan & Bilgiç, Taner, 2024. "Airline delay propagation: Estimation and modeling in daily operations," Journal of Air Transport Management, Elsevier, vol. 115(C).
  • Handle: RePEc:eee:jaitra:v:115:y:2024:i:c:s0969699724000139
    DOI: 10.1016/j.jairtraman.2024.102548
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699724000139
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2024.102548?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brueckner, Jan K. & Czerny, Achim I. & Gaggero, Alberto A., 2021. "Airline mitigation of propagated delays via schedule buffers: Theory and empirics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    2. Michelle Dunbar & Gary Froyland & Cheng-Lung Wu, 2012. "Robust Airline Schedule Planning: Minimizing Propagated Delay in an Integrated Routing and Crewing Framework," Transportation Science, INFORMS, vol. 46(2), pages 204-216, May.
    3. Shervin AhmadBeygi & Amy Cohn & Marcial Lapp, 2010. "Decreasing airline delay propagation by re-allocating scheduled slack," IISE Transactions, Taylor & Francis Journals, vol. 42(7), pages 478-489.
    4. Bojia Ye & Bo Liu & Yong Tian & Lili Wan, 2020. "A Methodology for Predicting Aggregate Flight Departure Delays in Airports Based on Supervised Learning," Sustainability, MDPI, vol. 12(7), pages 1-13, April.
    5. Leonardo Carvalho & Alice Sternberg & Leandro Maia Gonçalves & Ana Beatriz Cruz & Jorge A. Soares & Diego Brandão & Diego Carvalho & Eduardo Ogasawara, 2021. "On the relevance of data science for flight delay research: a systematic review," Transport Reviews, Taylor & Francis Journals, vol. 41(4), pages 499-528, July.
    6. Lavanya Marla & Bo Vaaben & Cynthia Barnhart, 2017. "Integrated Disruption Management and Flight Planning to Trade Off Delays and Fuel Burn," Transportation Science, INFORMS, vol. 51(1), pages 88-111, February.
    7. A. Serasu Duran & Sinan Gürel & M. Selim Aktürk, 2015. "Robust Airline Scheduling with Controllable Cruise Times and Chance Constraints," IISE Transactions, Taylor & Francis Journals, vol. 47(1), pages 64-83, January.
    8. Shan Lan & John-Paul Clarke & Cynthia Barnhart, 2006. "Planning for Robust Airline Operations: Optimizing Aircraft Routings and Flight Departure Times to Minimize Passenger Disruptions," Transportation Science, INFORMS, vol. 40(1), pages 15-28, February.
    9. Abdelghany, Khaled F. & S. Shah, Sharmila & Raina, Sidhartha & Abdelghany, Ahmed F., 2004. "A model for projecting flight delays during irregular operation conditions," Journal of Air Transport Management, Elsevier, vol. 10(6), pages 385-394.
    10. Kohl, Niklas & Larsen, Allan & Larsen, Jesper & Ross, Alex & Tiourine, Sergey, 2007. "Airline disruption management—Perspectives, experiences and outlook," Journal of Air Transport Management, Elsevier, vol. 13(3), pages 149-162.
    11. Hayfield, Tristen & Racine, Jeffrey S., 2008. "Nonparametric Econometrics: The np Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i05).
    12. Vinayak Deshpande & Mazhar Arıkan, 2012. "The Impact of Airline Flight Schedules on Flight Delays," Manufacturing & Service Operations Management, INFORMS, vol. 14(3), pages 423-440, July.
    13. Jay M. Rosenberger & Ellis L. Johnson & George L. Nemhauser, 2003. "Rerouting Aircraft for Airline Recovery," Transportation Science, INFORMS, vol. 37(4), pages 408-421, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Birolini, Sebastian & Jacquillat, Alexandre, 2023. "Day-ahead aircraft routing with data-driven primary delay predictions," European Journal of Operational Research, Elsevier, vol. 310(1), pages 379-396.
    2. Jane Lee & Lavanya Marla & Alexandre Jacquillat, 2020. "Dynamic Disruption Management in Airline Networks Under Airport Operating Uncertainty," Transportation Science, INFORMS, vol. 54(4), pages 973-997, July.
    3. Naz Yeti̇moğlu, Yücel & Selim Aktürk, M., 2021. "Aircraft and passenger recovery during an aircraft’s unexpected unavailability," Journal of Air Transport Management, Elsevier, vol. 91(C).
    4. Abdelghany, Ahmed & Guzhva, Vitaly S. & Abdelghany, Khaled, 2023. "The limitation of machine-learning based models in predicting airline flight block time," Journal of Air Transport Management, Elsevier, vol. 107(C).
    5. Da Lu & Fatma Gzara, 2015. "The robust crew pairing problem: model and solution methodology," Journal of Global Optimization, Springer, vol. 62(1), pages 29-54, May.
    6. Li, Chi & Mao, Jianfeng & Li, Lingyi & Wu, Jingxuan & Zhang, Lianmin & Zhu, Jianyu & Pan, Zibin, 2024. "Flight delay propagation modeling: Data, Methods, and Future opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    7. Judith Mulder & Willem van Jaarsveld & Rommert Dekker, 2019. "Simultaneous Optimization of Speed and Buffer Times with an Application to Liner Shipping," Transportation Science, INFORMS, vol. 53(2), pages 365-382, March.
    8. Zhang, Wei & (Ato) Xu, Wangtu, 2017. "Simulation-based robust optimization for the schedule of single-direction bus transit route: The design of experiment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 203-230.
    9. Liang, Zhe & Feng, Yuan & Zhang, Xiaoning & Wu, Tao & Chaovalitwongse, Wanpracha Art, 2015. "Robust weekly aircraft maintenance routing problem and the extension to the tail assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 238-259.
    10. Jon D. Petersen & Gustaf Sölveling & John-Paul Clarke & Ellis L. Johnson & Sergey Shebalov, 2012. "An Optimization Approach to Airline Integrated Recovery," Transportation Science, INFORMS, vol. 46(4), pages 482-500, November.
    11. Mazhar Arıkan & Vinayak Deshpande & Milind Sohoni, 2013. "Building Reliable Air-Travel Infrastructure Using Empirical Data and Stochastic Models of Airline Networks," Operations Research, INFORMS, vol. 61(1), pages 45-64, February.
    12. Gary Froyland & Stephen J. Maher & Cheng-Lung Wu, 2014. "The Recoverable Robust Tail Assignment Problem," Transportation Science, INFORMS, vol. 48(3), pages 351-372, August.
    13. Lonzius, Christopher & Lange, Anne, 2024. "Aircraft routing clusters and their impact on airline delays," Journal of Air Transport Management, Elsevier, vol. 114(C).
    14. Uğur Arıkan & Sinan Gürel & M. Selim Aktürk, 2016. "Integrated aircraft and passenger recovery with cruise time controllability," Annals of Operations Research, Springer, vol. 236(2), pages 295-317, January.
    15. Borochin, Paul, 2020. "The information content of real operating performance measures from the airline industry," Journal of Financial Markets, Elsevier, vol. 50(C).
    16. He, Yonghuan & Ma, Hoi-Lam & Park, Woo-Yong & Liu, Shi Qiang & Chung, Sai-Ho, 2023. "Maximizing robustness of aircraft routing with heterogeneous maintenance tasks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    17. Brueckner, Jan K. & Czerny, Achim I. & Gaggero, Alberto A., 2022. "Airline delay propagation: A simple method for measuring its extent and determinants," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 55-71.
    18. Abdelghany, Ahmed & Abdelghany, Khaled & Guzhva, Vitaly S., 2024. "Schedule-level optimization of flight block times for improved airline schedule planning: A data-driven approach," Journal of Air Transport Management, Elsevier, vol. 115(C).
    19. Mulder, J. & van Jaarsveld, W.L. & Dekker, R., 2016. "Simultaneous optimization of speed and buffer times for robust transportation systems," Econometric Institute Research Papers EI2016-36, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    20. Uğur Arıkan & Sinan Gürel & M. Aktürk, 2016. "Integrated aircraft and passenger recovery with cruise time controllability," Annals of Operations Research, Springer, vol. 236(2), pages 295-317, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:115:y:2024:i:c:s0969699724000139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.