IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v94y2021ics0969699721000582.html
   My bibliography  Save this article

Characterization of delay propagation in the air traffic network

Author

Listed:
  • Li, Qiang
  • Jing, Ranzhe

Abstract

We build a delay propagation network based on Bayesian Network approach to study the complex phenomenon of delay propagation within a large network consisting of the 100 busiest airports in the United States. Through topological analysis and probability analysis, we investigate the characterization of delay propagation among airports and the impact of different types of airports on delay propagation. Results indicate that the cumulative degree distribution of the delay propagation network follows an exponential function and flight delays take at most one transhipment to go from each airport to any other airports on average. For each individual airport, the effects of delay propagation are associated with airports size (traffic flow), small airports are easily affected by other airports while large airports are more affecting downstream airports but fewer affected by upstream airports. Finally, we show how the number of affected airports changes as a function of the delayed airports based on different simulation strategies.

Suggested Citation

  • Li, Qiang & Jing, Ranzhe, 2021. "Characterization of delay propagation in the air traffic network," Journal of Air Transport Management, Elsevier, vol. 94(C).
  • Handle: RePEc:eee:jaitra:v:94:y:2021:i:c:s0969699721000582
    DOI: 10.1016/j.jairtraman.2021.102075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699721000582
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2021.102075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Campanelli, Bruno & Fleurquin, Pablo & Arranz, Andrés & Etxebarria, Izaro & Ciruelos, Carla & Eguíluz, Víctor M. & Ramasco, José J., 2016. "Comparing the modeling of delay propagation in the US and European air traffic networks," Journal of Air Transport Management, Elsevier, vol. 56(PA), pages 12-18.
    2. Hao, Lu & Hansen, Mark & Zhang, Yu & Post, Joseph, 2014. "New York, New York: Two ways of estimating the delay impact of New York airports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 245-260.
    3. Shan Lan & John-Paul Clarke & Cynthia Barnhart, 2006. "Planning for Robust Airline Operations: Optimizing Aircraft Routings and Flight Departure Times to Minimize Passenger Disruptions," Transportation Science, INFORMS, vol. 40(1), pages 15-28, February.
    4. Du, Wen-Bo & Zhang, Ming-Yuan & Zhang, Yu & Cao, Xian-Bin & Zhang, Jun, 2018. "Delay causality network in air transport systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 466-476.
    5. Abdelghany, Khaled F. & S. Shah, Sharmila & Raina, Sidhartha & Abdelghany, Ahmed F., 2004. "A model for projecting flight delays during irregular operation conditions," Journal of Air Transport Management, Elsevier, vol. 10(6), pages 385-394.
    6. Bombelli, Alessandro & Santos, Bruno F. & Tavasszy, Lóránt, 2020. "Analysis of the air cargo transport network using a complex network theory perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    7. Zanin, Massimiliano, 2015. "Can we neglect the multi-layer structure of functional networks?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 184-192.
    8. Kafle, Nabin & Zou, Bo, 2016. "Modeling flight delay propagation: A new analytical-econometric approach," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 520-542.
    9. Vlachos, Ilias & Lin, Zhibin, 2014. "Drivers of airline loyalty: Evidence from the business travelers in China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 1-17.
    10. Wong, Jinn-Tsai & Tsai, Shy-Chang, 2012. "A survival model for flight delay propagation," Journal of Air Transport Management, Elsevier, vol. 23(C), pages 5-11.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bombelli, Alessandro & Sallan, Jose Maria, 2023. "Analysis of the effect of extreme weather on the US domestic air network. A delay and cancellation propagation network approach," Journal of Transport Geography, Elsevier, vol. 107(C).
    2. Birolini, Sebastian & Jacquillat, Alexandre, 2023. "Day-ahead aircraft routing with data-driven primary delay predictions," European Journal of Operational Research, Elsevier, vol. 310(1), pages 379-396.
    3. Brueckner, Jan K. & Czerny, Achim I. & Gaggero, Alberto A., 2022. "Airline delay propagation: A simple method for measuring its extent and determinants," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 55-71.
    4. Tang, Zhixing & Huang, Shan & Zhu, Xinping & Pan, Weijun & Han, Songchen & Gong, Tingyu, 2023. "Research on the multilayer structure of flight delay in China air traffic network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    5. Guo, Zhen & Hao, Mengyan & Yu, Bin & Yao, Baozhen, 2022. "Detecting delay propagation in regional air transport systems using convergent cross mapping and complex network theory," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    6. Chen, Shenwen & Du, Wenbo & Liu, Runran & Cao, Xianbin, 2023. "Finding spatial and temporal features of delay propagation via multi-layer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 614(C).
    7. Li, Chi & Mao, Jianfeng & Li, Lingyi & Wu, Jingxuan & Zhang, Lianmin & Zhu, Jianyu & Pan, Zibin, 2024. "Flight delay propagation modeling: Data, Methods, and Future opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    8. Ziming Wang & Chaohao Liao & Xu Hang & Lishuai Li & Daniel Delahaye & Mark Hansen, 2022. "Distribution Prediction of Strategic Flight Delays via Machine Learning Methods," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
    9. Hongyong Wang & Ping Xu & Fengwei Zhong, 2022. "Modeling and Feature Analysis of Air Traffic Complexity Propagation," Sustainability, MDPI, vol. 14(18), pages 1-21, September.
    10. Li, Qiang & Wu, Lu & Guan, Xinjia & Tian, Ze-jin, 2024. "Interplay of network topologies in aviation delay propagation: A complex network and machine learning analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    11. Wang, Yanjun & Li, Max Z. & Gopalakrishnan, Karthik & Liu, Tongdan, 2022. "Timescales of delay propagation in airport networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    12. Zhang, Mengyao & Huang, Tao & Guo, Zhaoxia & He, Zhenggang, 2022. "Complex-network-based traffic network analysis and dynamics: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chi & Mao, Jianfeng & Li, Lingyi & Wu, Jingxuan & Zhang, Lianmin & Zhu, Jianyu & Pan, Zibin, 2024. "Flight delay propagation modeling: Data, Methods, and Future opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    2. Li, Qiang & Wu, Lu & Guan, Xinjia & Tian, Ze-jin, 2024. "Interplay of network topologies in aviation delay propagation: A complex network and machine learning analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    3. Birolini, Sebastian & Jacquillat, Alexandre, 2023. "Day-ahead aircraft routing with data-driven primary delay predictions," European Journal of Operational Research, Elsevier, vol. 310(1), pages 379-396.
    4. Guo, Zhen & Hao, Mengyan & Yu, Bin & Yao, Baozhen, 2022. "Detecting delay propagation in regional air transport systems using convergent cross mapping and complex network theory," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    5. Chen, Shenwen & Du, Wenbo & Liu, Runran & Cao, Xianbin, 2023. "Finding spatial and temporal features of delay propagation via multi-layer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 614(C).
    6. Du, Wen-Bo & Zhang, Ming-Yuan & Zhang, Yu & Cao, Xian-Bin & Zhang, Jun, 2018. "Delay causality network in air transport systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 466-476.
    7. Kim, Myeonghyeon & Bae, Jiheon, 2021. "Modeling the flight departure delay using survival analysis in South Korea," Journal of Air Transport Management, Elsevier, vol. 91(C).
    8. Yu, Bin & Guo, Zhen & Asian, Sobhan & Wang, Huaizhu & Chen, Gang, 2019. "Flight delay prediction for commercial air transport: A deep learning approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 203-221.
    9. Bombelli, Alessandro & Sallan, Jose Maria, 2023. "Analysis of the effect of extreme weather on the US domestic air network. A delay and cancellation propagation network approach," Journal of Transport Geography, Elsevier, vol. 107(C).
    10. Wu, Cheng-Lung & Law, Kristie, 2019. "Modelling the delay propagation effects of multiple resource connections in an airline network using a Bayesian network model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 62-77.
    11. Chen, Gong & Fricke, Hartmut & Okhrin, Ostap & Rosenow, Judith, 2024. "Flight delay propagation inference in air transport networks using the multilayer perceptron," Journal of Air Transport Management, Elsevier, vol. 114(C).
    12. Sismanidou, Athina & Tarradellas, Joan & Suau-Sanchez, Pere, 2022. "The uneven geography of US air traffic delays: Quantifying the impact of connecting passengers on delay propagation," Journal of Transport Geography, Elsevier, vol. 98(C).
    13. Sternberg, Alice & Carvalho, Diego & Murta, Leonardo & Soares, Jorge & Ogasawara, Eduardo, 2016. "An analysis of Brazilian flight delays based on frequent patterns," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 282-298.
    14. Kim, Myeonghyeon & Park, Sunwook, 2021. "Airport and route classification by modelling flight delay propagation," Journal of Air Transport Management, Elsevier, vol. 93(C).
    15. Abdelghany, Ahmed & Guzhva, Vitaly S. & Abdelghany, Khaled, 2023. "The limitation of machine-learning based models in predicting airline flight block time," Journal of Air Transport Management, Elsevier, vol. 107(C).
    16. Abdelghany, Ahmed & Abdelghany, Khaled & Guzhva, Vitaly S., 2024. "Schedule-level optimization of flight block times for improved airline schedule planning: A data-driven approach," Journal of Air Transport Management, Elsevier, vol. 115(C).
    17. Rodríguez-Sanz, à lvaro & Comendador, Fernando Gómez & Valdés, Rosa Arnaldo & Pérez-Castán, Javier A., 2018. "Characterization and prediction of the airport operational saturation," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 147-172.
    18. Gurtner, Gérald & Cook, Andrew, 2021. "The hidden cost of uncertainty for airspace users," Journal of Air Transport Management, Elsevier, vol. 91(C).
    19. Kim, Myeonghyeon & Choi, Yuri & Song, Ki Han, 2019. "Identification model development for proactive response on irregular operations (IROPs)," Journal of Air Transport Management, Elsevier, vol. 75(C), pages 1-8.
    20. Cumelles, Joel & Lordan, Oriol & Sallan, Jose M., 2021. "Cascading failures in airport networks," Journal of Air Transport Management, Elsevier, vol. 92(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:94:y:2021:i:c:s0969699721000582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.