IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v113y2018i524p1710-1721.html
   My bibliography  Save this article

Bayesian Approximate Kernel Regression With Variable Selection

Author

Listed:
  • Lorin Crawford
  • Kris C. Wood
  • Xiang Zhou
  • Sayan Mukherjee

Abstract

Nonlinear kernel regression models are often used in statistics and machine learning because they are more accurate than linear models. Variable selection for kernel regression models is a challenge partly because, unlike the linear regression setting, there is no clear concept of an effect size for regression coefficients. In this article, we propose a novel framework that provides an effect size analog for each explanatory variable in Bayesian kernel regression models when the kernel is shift-invariant—for example, the Gaussian kernel. We use function analytic properties of shift-invariant reproducing kernel Hilbert spaces (RKHS) to define a linear vector space that: (i) captures nonlinear structure, and (ii) can be projected onto the original explanatory variables. This projection onto the original explanatory variables serves as an analog of effect sizes. The specific function analytic property we use is that shift-invariant kernel functions can be approximated via random Fourier bases. Based on the random Fourier expansion, we propose a computationally efficient class of Bayesian approximate kernel regression (BAKR) models for both nonlinear regression and binary classification for which one can compute an analog of effect sizes. We illustrate the utility of BAKR by examining two important problems in statistical genetics: genomic selection (i.e., phenotypic prediction) and association mapping (i.e., inference of significant variants or loci). State-of-the-art methods for genomic selection and association mapping are based on kernel regression and linear models, respectively. BAKR is the first method that is competitive in both settings. Supplementary materials for this article are available online.

Suggested Citation

  • Lorin Crawford & Kris C. Wood & Xiang Zhou & Sayan Mukherjee, 2018. "Bayesian Approximate Kernel Regression With Variable Selection," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1710-1721, October.
  • Handle: RePEc:taf:jnlasa:v:113:y:2018:i:524:p:1710-1721
    DOI: 10.1080/01621459.2017.1361830
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2017.1361830
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2017.1361830?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huber, Florian & Koop, Gary & Onorante, Luca & Pfarrhofer, Michael & Schreiner, Josef, 2023. "Nowcasting in a pandemic using non-parametric mixed frequency VARs," Journal of Econometrics, Elsevier, vol. 232(1), pages 52-69.
    2. Karin Klieber, 2023. "Non-linear dimension reduction in factor-augmented vector autoregressions," Papers 2309.04821, arXiv.org.
    3. Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2023. "Tail Forecasting With Multivariate Bayesian Additive Regression Trees," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 979-1022, August.
    4. Winn-Nuñez, Emily T. & Griffin, Maryclare & Crawford, Lorin, 2024. "A simple approach for local and global variable importance in nonlinear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
    5. Hauzenberger, Niko & Huber, Florian & Klieber, Karin, 2023. "Real-time inflation forecasting using non-linear dimension reduction techniques," International Journal of Forecasting, Elsevier, vol. 39(2), pages 901-921.
    6. Klieber, Karin, 2024. "Non-linear dimension reduction in factor-augmented vector autoregressions," Journal of Economic Dynamics and Control, Elsevier, vol. 159(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:113:y:2018:i:524:p:1710-1721. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.