IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i5p342-d69497.html
   My bibliography  Save this article

Performance Analysis of a Grid-Connected Upgraded Metallurgical Grade Silicon Photovoltaic System

Author

Listed:
  • Chao Huang

    (Department of Systems Engineering and Engineering Management, City University of Hong Kong, Kowloon, Hong Kong, China)

  • Michael Edesess

    (Centre for Systems Informatics Engineering, City University of Hong Kong, Kowloon, Hong Kong, China)

  • Alain Bensoussan

    (Department of Systems Engineering and Engineering Management, City University of Hong Kong, Kowloon, Hong Kong, China
    School of Management, University of Texas at Dallas, Richardson, TX 75080-3021, USA)

  • Kwok L. Tsui

    (Department of Systems Engineering and Engineering Management, City University of Hong Kong, Kowloon, Hong Kong, China)

Abstract

Because of their low cost, photovoltaic (PV) cells made from upgraded metallurgical grade silicon (UMG-Si) are a promising alternative to conventional solar grade silicon-based PV cells. This study investigates the outdoor performance of a 1.26 kW grid-connected UMG-Si PV system over five years, reporting the energy yields and performance ratio and estimating the long-term performance degradation rate. To make this investigation more meaningful, the performance of a mono-Si PV system installed at the same place and studied during the same period of time is presented for reference. Furthermore, this study systematizes and rationalizes the necessity of a data selection and filtering process to improve the accuracy of degradation rate estimation. The impact of plane-of-array irradiation threshold for data filtering on performance ratio and degradation rate is also studied. The UMG-Si PV system’s monthly performance ratio after data filtering ranged from 84% to 93% over the observation period. The annual degradation rate was 0.44% derived from time series of monthly performance ratio using the classical decomposition method. A comparison of performance ratio and degradation rate to conventional crystalline silicon-based PV systems suggests that performance of the UMG-Si PV system is comparable to that of conventional systems.

Suggested Citation

  • Chao Huang & Michael Edesess & Alain Bensoussan & Kwok L. Tsui, 2016. "Performance Analysis of a Grid-Connected Upgraded Metallurgical Grade Silicon Photovoltaic System," Energies, MDPI, vol. 9(5), pages 1-15, May.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:5:p:342-:d:69497
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/5/342/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/5/342/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cañete, Cristina & Carretero, Jesús & Sidrach-de-Cardona, Mariano, 2014. "Energy performance of different photovoltaic module technologies under outdoor conditions," Energy, Elsevier, vol. 65(C), pages 295-302.
    2. Theodosiou, Marina, 2011. "Forecasting monthly and quarterly time series using STL decomposition," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1178-1195, October.
    3. Phinikarides, Alexander & Kindyni, Nitsa & Makrides, George & Georghiou, George E., 2014. "Review of photovoltaic degradation rate methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 143-152.
    4. Gan, Peck Yean & Li, ZhiDong, 2015. "Quantitative study on long term global solar photovoltaic market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 88-99.
    5. Nofuentes, G. & García-Domingo, B. & Muñoz, J.V. & Chenlo, F., 2014. "Analysis of the dependence of the spectral factor of some PV technologies on the solar spectrum distribution," Applied Energy, Elsevier, vol. 113(C), pages 302-309.
    6. Sharma, Vikrant & Kumar, Arun & Sastry, O.S. & Chandel, S.S., 2013. "Performance assessment of different solar photovoltaic technologies under similar outdoor conditions," Energy, Elsevier, vol. 58(C), pages 511-518.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bouaichi, Abdellatif & El Amrani, Aumeur & Ouhadou, Malika & Lfakir, Aberrazak & Messaoudi, Choukri, 2020. "In-situ performance and degradation of three different photovoltaic module technologies installed in arid climate of Morocco," Energy, Elsevier, vol. 190(C).
    2. Balaska, Amira & Tahri, Ali & Tahri, Fatima & Stambouli, Amine Boudghene, 2017. "Performance assessment of five different photovoltaic module technologies under outdoor conditions in Algeria," Renewable Energy, Elsevier, vol. 107(C), pages 53-60.
    3. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    4. Alami, Abdul Hai, 2016. "Synthetic clay as an alternative backing material for passive temperature control of photovoltaic cells," Energy, Elsevier, vol. 108(C), pages 195-200.
    5. Irshad, Ahmad Shah & Ludin, Gul Ahmad & Masrur, Hasan & Ahmadi, Mikaeel & Yona, Atsushi & Mikhaylov, Alexey & Krishnan, Narayanan & Senjyu, Tomonobu, 2023. "Optimization of grid-photovoltaic and battery hybrid system with most technically efficient PV technology after the performance analysis," Renewable Energy, Elsevier, vol. 207(C), pages 714-730.
    6. Torres-Ramírez, M. & Nofuentes, G. & Silva, J.P. & Silvestre, S. & Muñoz, J.V., 2014. "Study on analytical modelling approaches to the performance of thin film PV modules in sunny inland climates," Energy, Elsevier, vol. 73(C), pages 731-740.
    7. Kichou, Sofiane & Silvestre, Santiago & Nofuentes, Gustavo & Torres-Ramírez, Miguel & Chouder, Aissa & Guasch, Daniel, 2016. "Characterization of degradation and evaluation of model parameters of amorphous silicon photovoltaic modules under outdoor long term exposure," Energy, Elsevier, vol. 96(C), pages 231-241.
    8. Visa, Ion & Burduhos, Bogdan & Neagoe, Mircea & Moldovan, Macedon & Duta, Anca, 2016. "Comparative analysis of the infield response of five types of photovoltaic modules," Renewable Energy, Elsevier, vol. 95(C), pages 178-190.
    9. Elibol, Erdem & Özmen, Özge Tüzün & Tutkun, Nedim & Köysal, Oğuz, 2017. "Outdoor performance analysis of different PV panel types," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 651-661.
    10. Evaldo C. Gouvêa & Pedro M. Sobrinho & Teófilo M. Souza, 2017. "Spectral Response of Polycrystalline Silicon Photovoltaic Cells under Real-Use Conditions," Energies, MDPI, vol. 10(8), pages 1-13, August.
    11. Teodoro Adrada Guerra & Julio Amador Guerra & Beatriz Orfao Tabernero & Guillermo De la Cruz García, 2017. "Comparative Energy Performance Analysis of Six Primary Photovoltaic Technologies in Madrid (Spain)," Energies, MDPI, vol. 10(6), pages 1-23, June.
    12. Savvakis, Nikolaos & Tsoutsos, Theocharis, 2015. "Performance assessment of a thin film photovoltaic system under actual Mediterranean climate conditions in the island of Crete," Energy, Elsevier, vol. 90(P2), pages 1435-1455.
    13. Ma, Chao & Wu, Runze & Liu, Zhao & Li, Xinyang, 2024. "Performance assessment of different photovoltaic module technologies in floating photovoltaic power plants under waters environment," Renewable Energy, Elsevier, vol. 222(C).
    14. Tsanakas, John A. & Ha, Long & Buerhop, Claudia, 2016. "Faults and infrared thermographic diagnosis in operating c-Si photovoltaic modules: A review of research and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 695-709.
    15. Dhanya Jothimani & Ravi Shankar & Surendra S. Yadav, 2016. "Discrete Wavelet Transform-Based Prediction of Stock Index: A Study on National Stock Exchange Fifty Index," Papers 1605.07278, arXiv.org.
    16. Atsu, Divine & Seres, Istvan & Aghaei, Mohammadreza & Farkas, Istvan, 2020. "Analysis of long-term performance and reliability of PV modules under tropical climatic conditions in sub-Saharan," Renewable Energy, Elsevier, vol. 162(C), pages 285-295.
    17. Song, Zhiying & Ji, Jie & Cai, Jingyong & Zhao, Bin & Li, Zhaomeng, 2021. "Investigation on a direct-expansion solar-assisted heat pump with a novel hybrid compound parabolic concentrator/photovoltaic/fin evaporator," Applied Energy, Elsevier, vol. 299(C).
    18. Lafond, François & Bailey, Aimee Gotway & Bakker, Jan David & Rebois, Dylan & Zadourian, Rubina & McSharry, Patrick & Farmer, J. Doyne, 2018. "How well do experience curves predict technological progress? A method for making distributional forecasts," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 104-117.
    19. Daxini, Rajiv & Wu, Yupeng, 2024. "Review of methods to account for the solar spectral influence on photovoltaic device performance," Energy, Elsevier, vol. 286(C).
    20. Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:5:p:342-:d:69497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.