IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v53y2013i3p524-532.html
   My bibliography  Save this article

A bivariate shot noise self-exciting process for insurance

Author

Listed:
  • Jang, Jiwook
  • Dassios, Angelos

Abstract

In this paper, we study a bivariate shot noise self-exciting process. This process includes both externally excited joint jumps, which are distributed according to a shot noise Cox process, and two separate self-excited jumps, which are distributed according to the branching structure of a Hawkes process with an exponential fertility rate, respectively. A constant rate of exponential decay is included in this process as it can play a role as the time value of money in economics, finance and insurance applications. We analyse this process systematically for its theoretical distributional properties, based on the piecewise deterministic Markov process theory developed by Davis (1984), and the martingale methodology used by Dassios and Jang (2003). The analytic expressions of the Laplace transforms of this process and the moments are presented, which have the potential to be applicable to a variety of problems in economics, finance and insurance. In this paper, as an application of this process, we provide insurance premium calculations based on its moments. Numerical examples show that this point process can be used for the modelling of discounted aggregate losses from catastrophic events.

Suggested Citation

  • Jang, Jiwook & Dassios, Angelos, 2013. "A bivariate shot noise self-exciting process for insurance," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 524-532.
  • Handle: RePEc:eee:insuma:v:53:y:2013:i:3:p:524-532
    DOI: 10.1016/j.insmatheco.2013.08.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668713001145
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2013.08.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jang, Ji-Wook & Krvavych, Yuriy, 2004. "Arbitrage-free premium calculation for extreme losses using the shot noise process and the Esscher transform," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 97-111, August.
    2. Bowsher, Clive G., 2007. "Modelling security market events in continuous time: Intensity based, multivariate point process models," Journal of Econometrics, Elsevier, vol. 141(2), pages 876-912, December.
    3. BAUWENS, Luc & HAUTSCH, Nikolaus, 2006. "Modelling financial high frequency data using point processes," LIDAM Discussion Papers CORE 2006080, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Kay Giesecke & Baeho Kim, 2011. "Risk Analysis of Collateralized Debt Obligations," Operations Research, INFORMS, vol. 59(1), pages 32-49, February.
    5. Dassios, Angelos & Zhao, Hongbiao, 2012. "Ruin by dynamic contagion claims," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 93-106.
    6. Gabriele Stabile & Giovanni Luca Torrisi, 2010. "Risk Processes with Non-stationary Hawkes Claims Arrivals," Methodology and Computing in Applied Probability, Springer, vol. 12(3), pages 415-429, September.
    7. V. Chavez-Demoulin & A. C. Davison & A. J. McNeil, 2005. "Estimating value-at-risk: a point process approach," Quantitative Finance, Taylor & Francis Journals, vol. 5(2), pages 227-234.
    8. Ji‐Wook Jang, 2004. "Martingale Approach for Moments of Discounted Aggregate Claims," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 71(2), pages 201-211, June.
    9. Dassios, Angelos & Jang, Jiwook, 2003. "Pricing of catastrophe reinsurance and derivatives using the Cox process with shot noise intensity," LSE Research Online Documents on Economics 2849, London School of Economics and Political Science, LSE Library.
    10. Aït-Sahalia, Yacine & Cacho-Diaz, Julio & Laeven, Roger J.A., 2015. "Modeling financial contagion using mutually exciting jump processes," Journal of Financial Economics, Elsevier, vol. 117(3), pages 585-606.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Swishchuk, Anatoliy & Zagst, Rudi & Zeller, Gabriela, 2021. "Hawkes processes in insurance: Risk model, application to empirical data and optimal investment," Insurance: Mathematics and Economics, Elsevier, vol. 101(PA), pages 107-124.
    2. Maciak, Matúš & Okhrin, Ostap & Pešta, Michal, 2021. "Infinitely stochastic micro reserving," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 30-58.
    3. Angelos Dassios & Jiwook Jang & Hongbiao Zhao, 2019. "A Generalised CIR Process with Externally-Exciting and Self-Exciting Jumps and Its Applications in Insurance and Finance," Risks, MDPI, vol. 7(4), pages 1-18, October.
    4. Barsotti, Flavia & Milhaud, Xavier & Salhi, Yahia, 2016. "Lapse risk in life insurance: Correlation and contagion effects among policyholders’ behaviors," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 317-331.
    5. Xiaoqi Zhang & Yi Chen & Yi Yao, 2021. "Dynamic information asymmetry in micro health insurance: implications for sustainability," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 46(3), pages 468-507, July.
    6. Yiqing Chen, 2019. "A Renewal Shot Noise Process with Subexponential Shot Marks," Risks, MDPI, vol. 7(2), pages 1-8, June.
    7. Liu, Guo & Jin, Zhuo & Li, Shuanming, 2021. "Household Lifetime Strategies under a Self-Contagious Market," European Journal of Operational Research, Elsevier, vol. 288(3), pages 935-952.
    8. Hillairet, Caroline & Réveillac, Anthony & Rosenbaum, Mathieu, 2023. "An expansion formula for Hawkes processes and application to cyber-insurance derivatives," Stochastic Processes and their Applications, Elsevier, vol. 160(C), pages 89-119.
    9. Hainaut, Donatien, 2021. "Moment generating function of non-Markov self-excited claims processes," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 406-424.
    10. Angelos Dassios & Xin Dong, 2014. "Stationarity of Bivariate Dynamic Contagion Processes," Papers 1405.5842, arXiv.org.
    11. Barsotti, Flavia & Milhaud, Xavier & Salhi, Yahia, 2016. "Lapse risk in life insurance: Correlation and contagion effects among policyholders’ behaviors," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 317-331.
    12. Hainaut, Donatien, 2021. "Moment generating function of non-Markov self-excited claims processes," LIDAM Discussion Papers ISBA 2021028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. Masahiko Egami & Rusudan Kevkhishvili, 2016. "An Analysis of Simultaneous Company Defaults Using a Shot Noise Process," Discussion papers e-16-001, Graduate School of Economics , Kyoto University.
    14. Jiwook Jang & Rosy Oh, 2020. "A Bivariate Compound Dynamic Contagion Process for Cyber Insurance," Papers 2007.04758, arXiv.org.
    15. Dassios, Angelos & Jang, Jiwook & Zhao, Hongbiao, 2019. "A generalised CIR process with externally-exciting and self-exciting jumps and its applications in insurance and finance," LSE Research Online Documents on Economics 102043, London School of Economics and Political Science, LSE Library.
    16. Anatoliy Swishchuk, 2017. "Risk Model Based on General Compound Hawkes Process," Papers 1706.09038, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angelos Dassios & Jiwook Jang & Hongbiao Zhao, 2019. "A Generalised CIR Process with Externally-Exciting and Self-Exciting Jumps and Its Applications in Insurance and Finance," Risks, MDPI, vol. 7(4), pages 1-18, October.
    2. Dassios, Angelos & Jang, Jiwook & Zhao, Hongbiao, 2019. "A generalised CIR process with externally-exciting and self-exciting jumps and its applications in insurance and finance," LSE Research Online Documents on Economics 102043, London School of Economics and Political Science, LSE Library.
    3. Jiwook Jang & Rosy Oh, 2020. "A Bivariate Compound Dynamic Contagion Process for Cyber Insurance," Papers 2007.04758, arXiv.org.
    4. Dassios, Angelos & Zhao, Hongbiao, 2017. "Efficient simulation of clustering jumps with CIR intensity," LSE Research Online Documents on Economics 74205, London School of Economics and Political Science, LSE Library.
    5. Angelos Dassios & Hongbiao Zhao, 2017. "Efficient Simulation of Clustering Jumps with CIR Intensity," Operations Research, INFORMS, vol. 65(6), pages 1494-1515, December.
    6. Angelos Dassios & Hongbiao Zhao, 2017. "A Generalized Contagion Process With An Application To Credit Risk," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-33, February.
    7. Dassios, Angelos & Zhao, Hongbiao, 2017. "A generalised contagion process with an application to credit risk," LSE Research Online Documents on Economics 68558, London School of Economics and Political Science, LSE Library.
    8. Kyungsub Lee, 2022. "Application of Hawkes volatility in the observation of filtered high-frequency price process in tick structures," Papers 2207.05939, arXiv.org, revised Sep 2024.
    9. Swishchuk, Anatoliy & Zagst, Rudi & Zeller, Gabriela, 2021. "Hawkes processes in insurance: Risk model, application to empirical data and optimal investment," Insurance: Mathematics and Economics, Elsevier, vol. 101(PA), pages 107-124.
    10. Volodymyr Korniichuk, 2012. "Forecasting extreme electricity spot prices," Cologne Graduate School Working Paper Series 03-14, Cologne Graduate School in Management, Economics and Social Sciences.
    11. Lee, Kyungsub & Seo, Byoung Ki, 2017. "Modeling microstructure price dynamics with symmetric Hawkes and diffusion model using ultra-high-frequency stock data," Journal of Economic Dynamics and Control, Elsevier, vol. 79(C), pages 154-183.
    12. Hainaut, Donatien, 2016. "A bivariate Hawkes process for interest rate modeling," Economic Modelling, Elsevier, vol. 57(C), pages 180-196.
    13. Jang, Jiwook & Dassios, Angelos & Zhao, Hongbiao, 2018. "Moments of renewal shot-noise processes and their applications," LSE Research Online Documents on Economics 87428, London School of Economics and Political Science, LSE Library.
    14. Yang Shen & Bin Zou, 2021. "Mean-Variance Portfolio Selection in Contagious Markets," Papers 2110.09417, arXiv.org.
    15. Rachele Foschi & Francesca Lilla & Cecilia Mancini, 2020. "Warnings about future jumps: properties of the exponential Hawkes model," Working Papers 13/2020, University of Verona, Department of Economics.
    16. Anatoliy Swishchuk & Aiden Huffman, 2020. "General Compound Hawkes Processes in Limit Order Books," Risks, MDPI, vol. 8(1), pages 1-25, March.
    17. Dassios, Angelos & Jang, Jiwook & Zhao, Hongbiao, 2015. "A risk model with renewal shot-noise Cox process," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 55-65.
    18. Cavaliere, Giuseppe & Lu, Ye & Rahbek, Anders & Stærk-Østergaard, Jacob, 2023. "Bootstrap inference for Hawkes and general point processes," Journal of Econometrics, Elsevier, vol. 235(1), pages 133-165.
    19. Ulrich Horst & Wei Xu, 2024. "Functional Limit Theorems for Hawkes Processes," Papers 2401.11495, arXiv.org, revised Nov 2024.
    20. Filimonov, Vladimir & Bicchetti, David & Maystre, Nicolas & Sornette, Didier, 2014. "Quantification of the high level of endogeneity and of structural regime shifts in commodity markets," Journal of International Money and Finance, Elsevier, vol. 42(C), pages 174-192.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:53:y:2013:i:3:p:524-532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.