IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i19p3611-d932099.html
   My bibliography  Save this article

Some Results on Measures of Interaction among Risks

Author

Listed:
  • Yiting Fan

    (Department of Mathematics, Shantou University, Shantou 515063, China)

  • Rui Fang

    (Department of Mathematics, Shantou University, Shantou 515063, China)

Abstract

It has become a common understanding that financial risk can spread rapidly from one institution to another, and the stressful status of one institution may finally result in a systemic crisis. One popular method to assess and quantify the risk of contagion is employing the co-risk measures and risk contribution measures. It is interesting and important to understand how the underlining dependence structure and magnitude of random risks jointly affect systemic risk measures. In this paper, we mainly focus on the conditional value-at-risk, conditional expected shortfall, the delta conditional value-at-risk, and the delta conditional expected shortfall. Existing studies mainly focus on the situation with two random risks, and this paper makes some contributions by considering the scenario with possibly more than two random risks. By employing the tools of stochastic order, positive dependence concepts and arrangement monotonicity, several results concerning the usual stochastic order, increasing convex order, dispersive order and excess wealth order are presented. Concisely speaking, it is found that for a large enough stress level, a larger random risk tends to lead to a more severe systemic risk. We also performed some Monte Carlo experiments as illustrations for the theoretical findings.

Suggested Citation

  • Yiting Fan & Rui Fang, 2022. "Some Results on Measures of Interaction among Risks," Mathematics, MDPI, vol. 10(19), pages 1-19, October.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:19:p:3611-:d:932099
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/19/3611/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/19/3611/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Miguel Sordo & Héctor Ramos, 2007. "Characterization of stochastic orders by L-functionals," Statistical Papers, Springer, vol. 48(2), pages 249-263, April.
    2. Peter W. Glynn & Yijie Peng & Michael C. Fu & Jian-Qiang Hu, 2021. "Computing Sensitivities for Distortion Risk Measures," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1520-1532, October.
    3. Emmanouil N. Karimalis & Nikos K. Nomikos, 2018. "Measuring systemic risk in the European banking sector: a copula CoVaR approach," The European Journal of Finance, Taylor & Francis Journals, vol. 24(11), pages 944-975, July.
    4. Rui Fang & Xiaohu Li, 2018. "Some Results on Measures of Interaction between Paired Risks," Risks, MDPI, vol. 6(3), pages 1-15, August.
    5. Yamai, Yasuhiro & Yoshiba, Toshinao, 2005. "Value-at-risk versus expected shortfall: A practical perspective," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 997-1015, April.
    6. Righi, Marcelo Brutti & Ceretta, Paulo Sergio, 2015. "A comparison of Expected Shortfall estimation models," Journal of Economics and Business, Elsevier, vol. 78(C), pages 14-47.
    7. Yang, Kun & Wei, Yu & He, Jianmin & Li, Shouwei, 2019. "Dependence and risk spillovers between mainland China and London stock markets before and after the Stock Connect programs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    8. Chen Zhou, 2010. "Are Banks Too Big to Fail? Measuring Systemic Importance of Financial Institutions," International Journal of Central Banking, International Journal of Central Banking, vol. 6(34), pages 205-250, December.
    9. Yonghong Jiang & Jinqi Mu & He Nie & Lanxin Wu, 2022. "Time‐frequency analysis of risk spillovers from oil to BRICS stock markets: A long‐memory Copula‐CoVaR‐MODWT method," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 3386-3404, July.
    10. Ortega-Jiménez, P. & Sordo, M.A. & Suárez-Llorens, A., 2021. "Stochastic orders and multivariate measures of risk contagion," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 199-207.
    11. Alejandro Balbás & José Garrido & Silvia Mayoral, 2009. "Properties of Distortion Risk Measures," Methodology and Computing in Applied Probability, Springer, vol. 11(3), pages 385-399, September.
    12. Girardi, Giulio & Tolga Ergün, A., 2013. "Systemic risk measurement: Multivariate GARCH estimation of CoVaR," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3169-3180.
    13. Kaas, Rob & Laeven, Roger J.A. & Nelsen, Roger B., 2009. "Worst VaR scenarios with given marginals and measures of association," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 146-158, April.
    14. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    15. Laeven, Roger J.A., 2009. "Worst VaR scenarios: A remark," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 159-163, April.
    16. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    17. Sordo, M.A. & Bello, A.J. & Suárez-Llorens, A., 2018. "Stochastic orders and co-risk measures under positive dependence," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 105-113.
    18. Cai, Jun & Wei, Wei, 2012. "On the invariant properties of notions of positive dependence and copulas under increasing transformations," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 43-49.
    19. Song Xi Chen, 2008. "Nonparametric Estimation of Expected Shortfall," Journal of Financial Econometrics, Oxford University Press, vol. 6(1), pages 87-107, Winter.
    20. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    21. Caporin, Massimiliano & Costola, Michele & Garibal, Jean-Charles & Maillet, Bertrand, 2022. "Systemic risk and severe economic downturns: A targeted and sparse analysis," Journal of Banking & Finance, Elsevier, vol. 134(C).
    22. Carlo Acerbi & Claudio Nordio & Carlo Sirtori, 2001. "Expected Shortfall as a Tool for Financial Risk Management," Papers cond-mat/0102304, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dhaene, Jan & Laeven, Roger J.A. & Zhang, Yiying, 2022. "Systemic risk: Conditional distortion risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 126-145.
    2. Ortega-Jiménez, P. & Sordo, M.A. & Suárez-Llorens, A., 2021. "Stochastic orders and multivariate measures of risk contagion," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 199-207.
    3. Sordo, M.A. & Bello, A.J. & Suárez-Llorens, A., 2018. "Stochastic orders and co-risk measures under positive dependence," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 105-113.
    4. Rui Fang & Xiaohu Li, 2018. "Some Results on Measures of Interaction between Paired Risks," Risks, MDPI, vol. 6(3), pages 1-15, August.
    5. Ortega-Jiménez, Patricia & Pellerey, Franco & Sordo, Miguel A. & Suárez-Llorens, Alfonso, 2024. "Probability equivalent level for CoVaR and VaR," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 22-35.
    6. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    7. James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
    8. Sordo, Miguel A., 2016. "A multivariate extension of the increasing convex order to compare risks," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 224-230.
    9. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    10. Yan Fang & Jian Li & Yinglin Liu & Yunfan Zhao, 2023. "Semiparametric estimation of expected shortfall and its application in finance," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 835-851, July.
    11. Farkas, Walter & Fringuellotti, Fulvia & Tunaru, Radu, 2020. "A cost-benefit analysis of capital requirements adjusted for model risk," Journal of Corporate Finance, Elsevier, vol. 65(C).
    12. Cossette, Hélène & Côté, Marie-Pier & Marceau, Etienne & Moutanabbir, Khouzeima, 2013. "Multivariate distribution defined with Farlie–Gumbel–Morgenstern copula and mixed Erlang marginals: Aggregation and capital allocation," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 560-572.
    13. Saša ŽIKOVIÆ & Randall K. FILER, 2013. "Ranking of VaR and ES Models: Performance in Developed and Emerging Markets," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(4), pages 327-359, August.
    14. Cerqueti, Roy & Giacalone, Massimiliano & Panarello, Demetrio, 2019. "A Generalized Error Distribution Copula-based method for portfolios risk assessment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 687-695.
    15. Tong Pu & Yifei Zhang & Yiying Zhang, 2024. "On Joint Marginal Expected Shortfall and Associated Contribution Risk Measures," Papers 2405.07549, arXiv.org.
    16. Müller, Fernanda Maria & Santos, Samuel Solgon & Righi, Marcelo Brutti, 2023. "A description of the COVID-19 outbreak role in financial risk forecasting," The North American Journal of Economics and Finance, Elsevier, vol. 66(C).
    17. Wei Jiang & Steven Kou, 2021. "Simulating risk measures via asymptotic expansions for relative errors," Mathematical Finance, Wiley Blackwell, vol. 31(3), pages 907-942, July.
    18. Mario Brandtner, 2016. "Spektrale Risikomaße: Konzeption, betriebswirtschaftliche Anwendungen und Fallstricke," Management Review Quarterly, Springer, vol. 66(2), pages 75-115, April.
    19. Cornilly, D. & Rüschendorf, L. & Vanduffel, S., 2018. "Upper bounds for strictly concave distortion risk measures on moment spaces," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 141-151.
    20. Del Brio, Esther B. & Mora-Valencia, Andrés & Perote, Javier, 2020. "Risk quantification for commodity ETFs: Backtesting value-at-risk and expected shortfall," International Review of Financial Analysis, Elsevier, vol. 70(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:19:p:3611-:d:932099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.