IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v21y2010i1p81-108.html
   My bibliography  Save this article

Risikoadjustierte Wertbeiträge zur ex ante Entscheidungsunterstützung: Ein axiomatischer Ansatz

Author

Listed:
  • Björn Häckel

Abstract

Die Umsetzung eines integrierten Ertrags- und Risikomanagements im Rahmen einer wertorientierten Unternehmenssteuerung erfordert den Einsatz zweckspezifischer Kennzahlen. Im vorliegenden Beitrag wird ein Ansatz zur axiomatischen Fundierung von risikoadjustierten Wertbeiträgen für den Zweck der ex ante Entscheidungsunterstützung entwickelt. Dabei wird insbesondere die Situation eines Investors betrachtet, für den als Alleineigentümer unsystematische Risiken des Unternehmensportfolios eine erhebliche Bewertungsrelevanz aufweisen. Ein Schwerpunkt des Beitrags liegt deshalb auf der adäquaten Berücksichtigung stochastischer Abhängigkeiten zwischen Investitionsalternativen und dem bestehenden Unternehmensportfolio und somit auf der Risikokomponente des risikoadjustierten Wertbeitrags. Es zeigt sich, dass in der Literatur häufig diskutierte Verfahren zur verursachungsgerechten Risikoallokation im Unternehmensportfolio zur ex ante Entscheidungsunterstützung in der Regel nicht geeignet sind. Copyright Springer-Verlag 2010

Suggested Citation

  • Björn Häckel, 2010. "Risikoadjustierte Wertbeiträge zur ex ante Entscheidungsunterstützung: Ein axiomatischer Ansatz," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 21(1), pages 81-108, June.
  • Handle: RePEc:spr:metrik:v:21:y:2010:i:1:p:81-108
    DOI: 10.1007/s00187-010-0100-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00187-010-0100-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00187-010-0100-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Rockafellar & Stan Uryasev & Michael Zabarankin, 2006. "Generalized deviations in risk analysis," Finance and Stochastics, Springer, vol. 10(1), pages 51-74, January.
    2. Homburg, Carsten & Scherpereel, Peter, 2008. "How should the cost of joint risk capital be allocated for performance measurement?," European Journal of Operational Research, Elsevier, vol. 187(1), pages 208-227, May.
    3. Michael Kalkbrener, 2005. "An Axiomatic Approach To Capital Allocation," Mathematical Finance, Wiley Blackwell, vol. 15(3), pages 425-437, July.
    4. Robert C. Merton & André Perold, 1993. "Theory Of Risk Capital In Financial Firms," Journal of Applied Corporate Finance, Morgan Stanley, vol. 6(3), pages 16-32, September.
    5. Stoughton, Neal M. & Zechner, Josef, 2007. "Optimal capital allocation using RAROC(TM) and EVA(R)," Journal of Financial Intermediation, Elsevier, vol. 16(3), pages 312-342, July.
    6. Dennis G. Uyemura & Charles C. Kantor & Justin M. Pettit, 1996. "Eva® For Banks: Value Creation, Risk Management, And Profitability Measurement," Journal of Applied Corporate Finance, Morgan Stanley, vol. 9(2), pages 94-109, June.
    7. Fischer, T., 2003. "Risk capital allocation by coherent risk measures based on one-sided moments," Insurance: Mathematics and Economics, Elsevier, vol. 32(1), pages 135-146, February.
    8. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    9. Frey, Rudiger & McNeil, Alexander J., 2002. "VaR and expected shortfall in portfolios of dependent credit risks: Conceptual and practical insights," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1317-1334, July.
    10. Helmut Gründl & Hato Schmeiser, 2007. "Capital Allocation for Insurance Companies—What Good IS IT?," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 74(2), pages 301-317, June.
    11. Christian S. Pedersen & Stephen E. Satchell, 1998. "An Extended Family of Financial-Risk Measures," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 23(2), pages 89-117, December.
    12. Froot, Kenneth A. & Stein, Jeremy C., 1998. "Risk management, capital budgeting, and capital structure policy for financial institutions: an integrated approach," Journal of Financial Economics, Elsevier, vol. 47(1), pages 55-82, January.
    13. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    14. Buch, A. & Dorfleitner, G., 2008. "Coherent risk measures, coherent capital allocations and the gradient allocation principle," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 235-242, February.
    15. Tsanakas, Andreas & Barnett, Christopher, 2003. "Risk capital allocation and cooperative pricing of insurance liabilities," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 239-254, October.
    16. William J. Baumol, 1963. "An Expected Gain-Confidence Limit Criterion for Portfolio Selection," Management Science, INFORMS, vol. 10(1), pages 174-182, October.
    17. Stoughton, Neal & Zechner, Josef, 1999. "Optimal Capital Allocation Using RAROC And EVA," CEPR Discussion Papers 2344, C.E.P.R. Discussion Papers.
    18. Thomas Pfeiffer & Georg Schneider, 2007. "Residual Income-Based Compensation Plans for Controlling Investment Decisions Under Sequential Private Information," Management Science, INFORMS, vol. 53(3), pages 495-507, March.
    19. Furman, Edward & Zitikis, Ricardas, 2008. "Weighted risk capital allocations," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 263-269, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baule, Rainer, 2014. "Allocation of risk capital on an internal market," European Journal of Operational Research, Elsevier, vol. 234(1), pages 186-196.
    2. Buch, Arne & Dorfleitner, Gregor & Wimmer, Maximilian, 2011. "Risk capital allocation for RORAC optimization," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 3001-3009, November.
    3. Kang, Woo-Young & Poshakwale, Sunil, 2019. "A new approach to optimal capital allocation for RORAC maximization in banks," Journal of Banking & Finance, Elsevier, vol. 106(C), pages 153-165.
    4. George Zanjani, 2010. "An Economic Approach to Capital Allocation," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(3), pages 523-549, September.
    5. Stephen J. Mildenhall, 2017. "Actuarial Geometry," Risks, MDPI, vol. 5(2), pages 1-44, June.
    6. van Gulick, Gerwald & De Waegenaere, Anja & Norde, Henk, 2012. "Excess based allocation of risk capital," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 26-42.
    7. Erel, Isil & Myers, Stewart C. & Read, James A., 2015. "A theory of risk capital," Journal of Financial Economics, Elsevier, vol. 118(3), pages 620-635.
    8. Joël Bessis, 2009. "Risk Management in Banking," Post-Print hal-00494876, HAL.
    9. Gómez, Fabio & Tang, Qihe & Tong, Zhiwei, 2022. "The gradient allocation principle based on the higher moment risk measure," Journal of Banking & Finance, Elsevier, vol. 143(C).
    10. Csóka, Péter, 2017. "Fair risk allocation in illiquid markets," Finance Research Letters, Elsevier, vol. 21(C), pages 228-234.
    11. Wang, Wei & Xu, Huifu & Ma, Tiejun, 2023. "Optimal scenario-dependent multivariate shortfall risk measure and its application in risk capital allocation," European Journal of Operational Research, Elsevier, vol. 306(1), pages 322-347.
    12. Boonen, Tim J. & De Waegenaere, Anja & Norde, Henk, 2020. "A generalization of the Aumann–Shapley value for risk capital allocation problems," European Journal of Operational Research, Elsevier, vol. 282(1), pages 277-287.
    13. Daniel Bauer & George Zanjani, 2016. "The Marginal Cost of Risk, Risk Measures, and Capital Allocation," Management Science, INFORMS, vol. 62(5), pages 1431-1457, May.
    14. Karl Michael Ortmann, 2016. "The link between the Shapley value and the beta factor," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 39(2), pages 311-325, November.
    15. Dóra Balog & Tamás László Bátyi & Péter Csóka & Miklós Pintér, 2014. "Properties of risk capital allocation methods: Core Compatibility, Equal Treatment Property and Strong Monotonicity," CERS-IE WORKING PAPERS 1417, Institute of Economics, Centre for Economic and Regional Studies.
    16. van Gulick, G. & De Waegenaere, A.M.B. & Norde, H.W., 2010. "Excess Based Allocation of Risk Capital," Other publications TiSEM f9231521-fea7-4524-8fea-8, Tilburg University, School of Economics and Management.
    17. Kamil J. Mizgier & Joseph M. Pasia, 2016. "Multiobjective optimization of credit capital allocation in financial institutions," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(4), pages 801-817, December.
    18. Balog, Dóra & Bátyi, Tamás László & Csóka, Péter & Pintér, Miklós, 2017. "Properties and comparison of risk capital allocation methods," European Journal of Operational Research, Elsevier, vol. 259(2), pages 614-625.
    19. Csóka Péter & Pintér Miklós, 2016. "On the Impossibility of Fair Risk Allocation," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 16(1), pages 143-158, January.
    20. Hougaard, Jens Leth & Smilgins, Aleksandrs, 2016. "Risk capital allocation with autonomous subunits: The Lorenz set," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 151-157.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:21:y:2010:i:1:p:81-108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.