IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v92y2020icp162-176.html
   My bibliography  Save this article

Multi-stage nested classification credibility quantile regression model

Author

Listed:
  • Pitselis, Georgios

Abstract

In insurance (or in finance) practice, in a regression setting, there are cases where the error distribution is not normal and other cases where the set of data is contaminated due to outlier events. In such cases the classical credibility regression models lead to an unsatisfactory behavior of credibility estimators, and it is more appropriate to use quantile regression instead of the ordinary least squares estimation. However, these quantile credibility models cannot perform effectively when the set of data has nested (hierarchical) structure. This paper develops credibility models for regression quantiles with nested classification as an alternative to Norberg’s (1986) approach of random coefficient regression model with multi-stage nested classification. This paper illustrates two types of applications, one with insurance data and one with Fama/French financial data.

Suggested Citation

  • Pitselis, Georgios, 2020. "Multi-stage nested classification credibility quantile regression model," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 162-176.
  • Handle: RePEc:eee:insuma:v:92:y:2020:i:c:p:162-176
    DOI: 10.1016/j.insmatheco.2020.03.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668720300421
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2020.03.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pitselis, Georgios, 2017. "Risk measures in a quantile regression credibility framework with Fama/French data applications," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 122-134.
    2. Frees, Edward W. & Young, Virginia R. & Luo, Yu, 1999. "A longitudinal data analysis interpretation of credibility models," Insurance: Mathematics and Economics, Elsevier, vol. 24(3), pages 229-247, May.
    3. Moshe Buchinsky, 1998. "Recent Advances in Quantile Regression Models: A Practical Guideline for Empirical Research," Journal of Human Resources, University of Wisconsin Press, vol. 33(1), pages 88-126.
    4. Denuit, Michel, 2008. "Comonotonic approximations to quantiles of life annuity conditional expected present value," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 831-838, April.
    5. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, September.
    6. Roger W. Koenker & Vasco D'Orey, 1987. "Computing Regression Quantiles," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(3), pages 383-393, November.
    7. Gebizlioglu, Omer L. & Yagci, Banu, 2008. "Tolerance intervals for quantiles of bivariate risks and risk measurement," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1022-1027, June.
    8. Frees, Edward W. & Valdez, Emiliano A., 2008. "Hierarchical Insurance Claims Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1457-1469.
    9. Pitselis, Georgios, 2013. "Quantile credibility models," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 477-489.
    10. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    11. Powell, James L., 1986. "Censored regression quantiles," Journal of Econometrics, Elsevier, vol. 32(1), pages 143-155, June.
    12. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    13. Bauwelinckx, T. & Goovaerts, M. J., 1990. "On a multilevel hierarchical credibility algorithm," Insurance: Mathematics and Economics, Elsevier, vol. 9(2-3), pages 221-228, September.
    14. Kudryavtsev, Andrey A., 2009. "Using quantile regression for rate-making," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 296-304, October.
    15. Roger Koenker & Vasco d'Orey, 1994. "A Remark on Algorithm as 229: Computing Dual Regression Quantiles and Regression Rank Scores," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(2), pages 410-414, June.
    16. Powell, James L., 1986. "Two-Step Quantile Estimation Of The Censored Regression Model," SSRI Workshop Series 292681, University of Wisconsin-Madison, Social Systems Research Institute.
    17. Pitt, D. G. W., 2006. "Regression Quantile Analysis of Claim Termination Rates for Income Protection Insurance," Annals of Actuarial Science, Cambridge University Press, vol. 1(2), pages 345-357, September.
    18. Pitselis, Georgios, 2008. "Robust regression credibility: The influence function approach," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 288-300, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Wang & Limin Wen & Zhixin Yang & Quan Yuan, 2020. "Quantile Credibility Models with Common Effects," Risks, MDPI, vol. 8(4), pages 1-10, September.
    2. Corsaro, Stefania & Marino, Zelda & Scognamiglio, Salvatore, 2024. "Quantile mortality modelling of multiple populations via neural networks," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 114-133.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pitselis, Georgios, 2013. "Quantile credibility models," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 477-489.
    2. Pitselis, Georgios, 2017. "Risk measures in a quantile regression credibility framework with Fama/French data applications," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 122-134.
    3. Al-Nasseri, Alya & Menla Ali, Faek & Tucker, Allan, 2021. "Investor sentiment and the dispersion of stock returns: Evidence based on the social network of investors," International Review of Financial Analysis, Elsevier, vol. 78(C).
    4. Halkos, George E., 2011. "Nonparametric modelling of biodiversity: Determinants of threatened species," Journal of Policy Modeling, Elsevier, vol. 33(4), pages 618-635, July.
    5. Rothe, Christoph & Wied, Dominik, 2020. "Estimating derivatives of function-valued parameters in a class of moment condition models," Journal of Econometrics, Elsevier, vol. 217(1), pages 1-19.
    6. Wei Wang & Limin Wen & Zhixin Yang & Quan Yuan, 2020. "Quantile Credibility Models with Common Effects," Risks, MDPI, vol. 8(4), pages 1-10, September.
    7. Halkos, George, 2010. "Modelling biodiversity," MPRA Paper 39075, University Library of Munich, Germany.
    8. Genya Kobayashi & Hideo Kozumi, 2012. "Bayesian analysis of quantile regression for censored dynamic panel data," Computational Statistics, Springer, vol. 27(2), pages 359-380, June.
    9. He, Xuming & Pan, Xiaoou & Tan, Kean Ming & Zhou, Wen-Xin, 2023. "Smoothed quantile regression with large-scale inference," Journal of Econometrics, Elsevier, vol. 232(2), pages 367-388.
    10. Kim, Mo Se & Lee, Byung Sung & Lee, Hye Seon & Lee, Seung Ho & Lee, Junseok & Kim, Wonse, 2020. "Robust estimation of outage costs in South Korea using a machine learning technique: Bayesian Tobit quantile regression," Applied Energy, Elsevier, vol. 278(C).
    11. Fuzi, Mohd Fadzli Mohd & Jemain, Abdul Aziz & Ismail, Noriszura, 2016. "Bayesian quantile regression model for claim count data," Insurance: Mathematics and Economics, Elsevier, vol. 66(C), pages 124-137.
    12. Jacob A. Bikker & Laura Spierdijk & Pieter Jelle van der Sluis, 2005. "Cheap versus Expensive Trades: Assessing the Determinants of Market Impact Costs," DNB Working Papers 069, Netherlands Central Bank, Research Department.
    13. Huber, Martin & Melly, Blaise, 2011. "Quantile Regression in the Presence of Sample Selection," Economics Working Paper Series 1109, University of St. Gallen, School of Economics and Political Science.
    14. Eric Bouye & Mark Salmon, 2009. "Dynamic copula quantile regressions and tail area dynamic dependence in Forex markets," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 721-750.
    15. Gustavsen, Geir Waehler & Jolliffe, Dean & Rickertsen, Kyrre, 2008. "Censored Quantile Regression and Purchases of Ice Cream," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6534, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    16. Meligkotsidou, Loukia & Vrontos, Ioannis D. & Vrontos, Spyridon D., 2009. "Quantile regression analysis of hedge fund strategies," Journal of Empirical Finance, Elsevier, vol. 16(2), pages 264-279, March.
    17. Gustavsen, Geir Wæhler & Rickertsen, Kyrre, 2013. "Adjusting VAT rates to promote healthier diets in Norway: A censored quantile regression approach," Food Policy, Elsevier, vol. 42(C), pages 88-95.
    18. Pitselis, Georgios, 2016. "Credible risk measures with applications in actuarial sciences and finance," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 373-386.
    19. Geir Wæhler Gustavsen & Kyrre Rickertsen, 2009. "The effects of taxes on purchases of sugar-sweetened carbonated soft drinks: a quantile regression approach," Applied Economics, Taylor & Francis Journals, vol. 43(6), pages 707-716.
    20. Deborah A. Cobb-Clark & Sonja C. Kassenboehmer & Mathias G. Sinning, 2013. "Locus of Control and Savings," Ruhr Economic Papers 0455, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:92:y:2020:i:c:p:162-176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.