IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v57y2023i4d10.1007_s11135-022-01537-z.html
   My bibliography  Save this article

Backtesting stochastic mortality models by prediction interval-based metrics

Author

Listed:
  • Salvatore Scognamiglio

    (University of Naples Parthenope)

  • Mario Marino

    (Sapienza University of Rome)

Abstract

Human lifespan increments represent one of the main current risks for governments and pension and health benefits providers. Longevity societies imply financial sustainability challenges to guarantee adequate socioeconomic conditions for all individuals for a longer period. Consequently, modelling population dynamics and projecting future longevity scenarios are vital tasks for policymakers. As an answer, the demographic and the actuarial literature have been introduced and compared to several stochastic mortality models, although few studies have thoroughly tested the uncertainty concerning mortality projections. Forecasting mortality uncertainty levels have a central role since they reveal the potential, unexpected longevity rise and the related economic impact. Therefore, the present study poses a methodological framework to backtest uncertainty in mortality projections by exploiting uncertainty metrics not yet adopted in mortality literature. Using the data from the Human Mortality Database of the male and female populations of five countries, we present some numerical applications to illustrate how the proposed criterion works. The results show that there is no mortality model overperforming the others in all cases, and the best model choice depends on the data considered.

Suggested Citation

  • Salvatore Scognamiglio & Mario Marino, 2023. "Backtesting stochastic mortality models by prediction interval-based metrics," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3825-3847, August.
  • Handle: RePEc:spr:qualqt:v:57:y:2023:i:4:d:10.1007_s11135-022-01537-z
    DOI: 10.1007/s11135-022-01537-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11135-022-01537-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11135-022-01537-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin & Coughlan, Guy D. & Epstein, David & Khalaf-Allah, Marwa, 2011. "Mortality density forecasts: An analysis of six stochastic mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 355-367, May.
    2. Andrew Cairns & David Blake & Kevin Dowd & Guy Coughlan & David Epstein & Alen Ong & Igor Balevich, 2009. "A Quantitative Comparison of Stochastic Mortality Models Using Data From England and Wales and the United States," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(1), pages 1-35.
    3. Plat, Richard, 2009. "On stochastic mortality modeling," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 393-404, December.
    4. Virginia Zarulli & Elizaveta Sopina & Veronica Toffolutti & Adam Lenart, 2021. "Health care system efficiency and life expectancy: A 140-country study," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-11, July.
    5. Neil K. Mehta & Leah R. Abrams & Mikko Myrskylä, 2020. "US life expectancy stalls due to cardiovascular disease, not drug deaths," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 117(13), pages 6998-7000, March.
    6. Brouhns, Natacha & Denuit, Michel & Vermunt, Jeroen K., 2002. "A Poisson log-bilinear regression approach to the construction of projected lifetables," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 373-393, December.
    7. Haberman, Steven & Renshaw, Arthur, 2011. "A comparative study of parametric mortality projection models," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 35-55, January.
    8. Andrew Hunt & David Blake, 2014. "A General Procedure for Constructing Mortality Models," North American Actuarial Journal, Taylor & Francis Journals, vol. 18(1), pages 116-138.
    9. Cairns, Andrew J.G. & Kallestrup-Lamb, Malene & Rosenskjold, Carsten & Blake, David & Dowd, Kevin, 2019. "Modelling Socio-Economic Differences In Mortality Using A New Affluence Index," ASTIN Bulletin, Cambridge University Press, vol. 49(3), pages 555-590, September.
    10. Iain D. Currie, 2016. "On fitting generalized linear and non-linear models of mortality," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2016(4), pages 356-383, April.
    11. Kleinow, Torsten, 2015. "A common age effect model for the mortality of multiple populations," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 147-152.
    12. Duolao Wang & Pengjun Lu, 2005. "Modelling and forecasting mortality distributions in England and Wales using the Lee-Carter model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(9), pages 873-885.
    13. Nan Li & Ronald Lee, 2005. "Coherent mortality forecasts for a group of populations: An extension of the lee-carter method," Demography, Springer;Population Association of America (PAA), vol. 42(3), pages 575-594, August.
    14. Bjerre, Dorethe Skovgaard, 2022. "Tree-Based Machine Learning Methods For Modeling And Forecasting Mortality," ASTIN Bulletin, Cambridge University Press, vol. 52(3), pages 765-787, September.
    15. Czado, Claudia & Delwarde, Antoine & Denuit, Michel, 2005. "Bayesian Poisson log-bilinear mortality projections," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 260-284, June.
    16. Andrea Nigri & Elisabetta Barbi & Susanna Levantesi, 2022. "The relay for human longevity: country-specific contributions to the increase of the best-practice life expectancy," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(6), pages 4061-4073, December.
    17. Paola Biffi & Gian Clemente, 2014. "Selecting stochastic mortality models for the Italian population," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 37(2), pages 255-286, October.
    18. José Manuel Aburto & Alyson van Raalte, 2018. "Lifespan Dispersion in Times of Life Expectancy Fluctuation: The Case of Central and Eastern Europe," Demography, Springer;Population Association of America (PAA), vol. 55(6), pages 2071-2096, December.
    19. Carfora, M.F. & Cutillo, L. & Orlando, A., 2017. "A quantitative comparison of stochastic mortality models on Italian population data," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 198-214.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    2. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2022. "Thirty years on: A review of the Lee-Carter method for forecasting mortality," SocArXiv 8u34d, Center for Open Science.
    3. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    4. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    5. Bravo, Jorge M. & Ayuso, Mercedes & Holzmann, Robert & Palmer, Edward, 2021. "Addressing the life expectancy gap in pension policy," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 200-221.
    6. Barigou, Karim & Goffard, Pierre-Olivier & Loisel, Stéphane & Salhi, Yahia, 2023. "Bayesian model averaging for mortality forecasting using leave-future-out validation," International Journal of Forecasting, Elsevier, vol. 39(2), pages 674-690.
    7. Hunt, Andrew & Blake, David, 2015. "Modelling longevity bonds: Analysing the Swiss Re Kortis bond," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 12-29.
    8. David Atance & Alejandro Balbás & Eliseo Navarro, 2020. "Constructing dynamic life tables with a single-factor model," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(2), pages 787-825, December.
    9. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 485564, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
    10. Colin O’hare & Youwei Li, 2017. "Modelling mortality: are we heading in the right direction?," Applied Economics, Taylor & Francis Journals, vol. 49(2), pages 170-187, January.
    11. Apostolos Bozikas & Georgios Pitselis, 2018. "An Empirical Study on Stochastic Mortality Modelling under the Age-Period-Cohort Framework: The Case of Greece with Applications to Insurance Pricing," Risks, MDPI, vol. 6(2), pages 1-34, April.
    12. Jaap Spreeuw & Iqbal Owadally & Muhammad Kashif, 2022. "Projecting Mortality Rates Using a Markov Chain," Mathematics, MDPI, vol. 10(7), pages 1-18, April.
    13. James Risk & Michael Ludkovski, 2015. "Statistical Emulators for Pricing and Hedging Longevity Risk Products," Papers 1508.00310, arXiv.org, revised Sep 2015.
    14. Yang, Bowen & Li, Jackie & Balasooriya, Uditha, 2015. "Using bootstrapping to incorporate model error for risk-neutral pricing of longevity risk," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 16-27.
    15. Matteo Dimai & Marek Brabec, 2024. "A Bayesian model for age at death with cohort effects," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 51(33), pages 1017-1058.
    16. Massimiliano Menzietti & Maria Francesca Morabito & Manuela Stranges, 2019. "Mortality Projections for Small Populations: An Application to the Maltese Elderly," Risks, MDPI, vol. 7(2), pages 1-25, March.
    17. Andrew J.G. Cairns & Malene Kallestrup-Lamb & Carsten P.T. Rosenskjold & David Blake & Kevin Dowd, 2016. "Modelling Socio-Economic Differences in the Mortality of Danish Males Using a New Affluence Index," CREATES Research Papers 2016-14, Department of Economics and Business Economics, Aarhus University.
    18. Andrew J.G. Cairns & Kevin Dowd & David Blake & Guy D. Coughlan, 2014. "Longevity hedge effectiveness: a decomposition," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 217-235, February.
    19. Corsaro, Stefania & Marino, Zelda & Scognamiglio, Salvatore, 2024. "Quantile mortality modelling of multiple populations via neural networks," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 114-133.
    20. Norkhairunnisa Redzwan & Rozita Ramli, 2022. "A Bibliometric Analysis of Research on Stochastic Mortality Modelling and Forecasting," Risks, MDPI, vol. 10(10), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:57:y:2023:i:4:d:10.1007_s11135-022-01537-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.