IDEAS home Printed from https://ideas.repec.org/a/nas/journl/v116y2019p10729-10733.html
   My bibliography  Save this article

Productivity, prominence, and the effects of academic environment

Author

Listed:
  • Samuel F. Way

    (Department of Computer Science, University of Colorado Boulder, Boulder, CO 80309)

  • Allison C. Morgan

    (Department of Computer Science, University of Colorado Boulder, Boulder, CO 80309)

  • Daniel B. Larremore

    (Department of Computer Science, University of Colorado Boulder, Boulder, CO 80309; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309)

  • Aaron Clauset

    (Department of Computer Science, University of Colorado Boulder, Boulder, CO 80309; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309; Santa Fe Institute, Santa Fe, NM 87501)

Abstract

Faculty at prestigious institutions produce more scientific papers, receive more citations and scholarly awards, and are typically trained at more-prestigious institutions than faculty with less prestigious appointments. This imbalance is often attributed to a meritocratic system that sorts individuals into more-prestigious positions according to their reputation, past achievements, and potential for future scholarly impact. Here, we investigate the determinants of scholarly productivity and measure their dependence on past training and current work environments. To distinguish the effects of these environments, we apply a matched-pairs experimental design to career and productivity trajectories of 2,453 early-career faculty at all 205 PhD-granting computer science departments in the United States and Canada, who together account for over 200,000 publications and 7.4 million citations. Our results show that the prestige of faculty’s current work environment, not their training environment, drives their future scientific productivity, while current and past locations drive prominence. Furthermore, the characteristics of a work environment are more predictive of faculty productivity and impact than mechanisms representing preferential selection or retention of more-productive scholars by more-prestigious departments. These results identify an environmental mechanism for cumulative advantage, in which an individual’s past successes are “locked in” via placement into a more prestigious environment, which directly facilitates future success. The scientific productivity of early-career faculty is thus driven by where they work, rather than where they trained for their doctorate, indicating a limited role for doctoral prestige in predicting scientific contributions.

Suggested Citation

  • Samuel F. Way & Allison C. Morgan & Daniel B. Larremore & Aaron Clauset, 2019. "Productivity, prominence, and the effects of academic environment," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 116(22), pages 10729-10733, May.
  • Handle: RePEc:nas:journl:v:116:y:2019:p:10729-10733
    as

    Download full text from publisher

    File URL: http://www.pnas.org/content/116/22/10729.full
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sarah W Davies & Hollie M Putnam & Tracy Ainsworth & Julia K Baum & Colleen B Bove & Sarah C Crosby & Isabelle M Côté & Anne Duplouy & Robinson W Fulweiler & Alyssa J Griffin & Torrance C Hanley & Tes, 2021. "Promoting inclusive metrics of success and impact to dismantle a discriminatory reward system in science," PLOS Biology, Public Library of Science, vol. 19(6), pages 1-15, June.
    2. Liang, Wenyan & Gu, Jun & Nyland, Chris, 2022. "China's new research evaluation policy: Evidence from economics faculty of Elite Chinese universities," Research Policy, Elsevier, vol. 51(1).
    3. Xie, Zheng, 2020. "Predicting publication productivity for researchers: A piecewise Poisson model," Journal of Informetrics, Elsevier, vol. 14(3).
    4. Barigozzi, Francesca & Manna, Ester, 2020. "Envy in mission-oriented organisations," Journal of Economic Behavior & Organization, Elsevier, vol. 179(C), pages 395-424.
    5. Alexey Lyutov & Yilmaz Uygun & Marc-Thorsten Hütt, 2021. "Machine learning misclassification of academic publications reveals non-trivial interdependencies of scientific disciplines," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1173-1186, February.
    6. Li Hou & Qiang Wu & Yundong Xie, 2022. "Does early publishing in top journals really predict long-term scientific success in the business field?," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6083-6107, November.
    7. Wumei Du & Zheng Xie & Yiqin Lv, 2021. "Predicting publication productivity for authors: Shallow or deep architecture?," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5855-5879, July.
    8. Wuestman, Mignon & Wanzenböck, Iris & Frenken, Koen, 2023. "Local peer communities and future academic success of Ph.D. candidates," Research Policy, Elsevier, vol. 52(8).
    9. Hou, Li & Wu, Qiang & Xie, Yundong, 2024. "Does open identity of peer reviewers positively relate to citations?," Journal of Informetrics, Elsevier, vol. 18(1).
    10. Ao, Weiyi & Lyu, Dongqing & Ruan, Xuanmin & Li, Jiang & Cheng, Ying, 2023. "Scientific creativity patterns in scholars’ academic careers: Evidence from PubMed," Journal of Informetrics, Elsevier, vol. 17(4).
    11. Yu, Xiaoyao & Szymanski, Boleslaw K. & Jia, Tao, 2021. "Become a better you: Correlation between the change of research direction and the change of scientific performance," Journal of Informetrics, Elsevier, vol. 15(3).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nas:journl:v:116:y:2019:p:10729-10733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Eric Cain (email available below). General contact details of provider: http://www.pnas.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.