IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v500y2018icp189-198.html
   My bibliography  Save this article

Exploring the influence of social activity on scientific career

Author

Listed:
  • Xie, Zonglin
  • Xie, Zheng
  • Li, Jianping
  • Yang, Qian

Abstract

For researchers, does activity in academic society influence their careers? In scientometrics, the activity can be expressed through the number of collaborators and scientific careers through the number of publications and citations of authors. We provide empirical evidence from four datasets of representative journals and explore the correlations between each two of the three indices. By using a hypothetical extraction method, we divide authors into patterns which can reflect the different extent of preference for social activity, according to their contributions to the correlation between the number of collaborators and that of papers. Furthermore, we choose two of the patterns as a sociable one and an unsociable one and then compare both of the expected value and the distribution of publications and citations for authors between sociable pattern and unsociable pattern. Finally, we draw a conclusion that social activity could be favorable for authors to promote academic outcomes and obtain recognition.

Suggested Citation

  • Xie, Zonglin & Xie, Zheng & Li, Jianping & Yang, Qian, 2018. "Exploring the influence of social activity on scientific career," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 189-198.
  • Handle: RePEc:eee:phsmap:v:500:y:2018:i:c:p:189-198
    DOI: 10.1016/j.physa.2018.02.103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118301900
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.02.103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Milojević, Staša, 2013. "Accuracy of simple, initials-based methods for author name disambiguation," Journal of Informetrics, Elsevier, vol. 7(4), pages 767-773.
    2. Vincent Larivière & Yves Gingras & Éric Archambault, 2006. "Canadian collaboration networks: A comparative analysis of the natural sciences, social sciences and the humanities," Scientometrics, Springer;Akadémiai Kiadó, vol. 68(3), pages 519-533, September.
    3. S. R. Goldberg & H. Anthony & T. S. Evans, 2015. "Modelling citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1577-1604, December.
    4. Radhamany Sooryamoorthy, 2014. "Publication productivity and collaboration of researchers in South Africa: new empirical evidence," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(1), pages 531-545, January.
    5. Abbasi, Alireza & Altmann, Jörn & Hossain, Liaquat, 2011. "Identifying the effects of co-authorship networks on the performance of scholars: A correlation and regression analysis of performance measures and social network analysis measures," Journal of Informetrics, Elsevier, vol. 5(4), pages 594-607.
    6. Staša Milojević, 2010. "Modes of collaboration in modern science: Beyond power laws and preferential attachment," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(7), pages 1410-1423, July.
    7. Zheng Xie & Zonglin Xie & Miao Li & Jianping Li & Dongyun Yi, 2017. "Modeling the coevolution between citations and coauthorship of scientific papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(1), pages 483-507, July.
    8. Barabási, A.L & Jeong, H & Néda, Z & Ravasz, E & Schubert, A & Vicsek, T, 2002. "Evolution of the social network of scientific collaborations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 311(3), pages 590-614.
    9. Xie, Zheng & Ouyang, Zhenzheng & Liu, Qi & Li, Jianping, 2016. "A geometric graph model for citation networks of exponentially growing scientific papers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 167-175.
    10. Zheng Xie & Zhenzheng Ouyang & Pengyuan Zhang & Dongyun Yi & Dexing Kong, 2015. "Modeling the Citation Network by Network Cosmology," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-13, March.
    11. Jinseok Kim & Jana Diesner, 2016. "Distortive effects of initial-based name disambiguation on measurements of large-scale coauthorship networks," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(6), pages 1446-1461, June.
    12. Estrada, Ernesto & Rodríguez-Velázquez, Juan A., 2006. "Subgraph centrality and clustering in complex hyper-networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 581-594.
    13. Olle Persson & Wolfgang Glänzel & Rickard Danell, 2004. "Inflationary bibliometric values: The role of scientific collaboration and the need for relative indicators in evaluative studies," Scientometrics, Springer;Akadémiai Kiadó, vol. 60(3), pages 421-432, August.
    14. Tibor Braun & Wolfgang Glänzel & András Schubert, 2006. "A Hirsch-type index for journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 69(1), pages 169-173, October.
    15. Mengjiao Qi & An Zeng & Menghui Li & Ying Fan & Zengru Di, 2017. "Standing on the shoulders of giants: the effect of outstanding scientists on young collaborators’ careers," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1839-1850, June.
    16. Xie, Zheng & Ouyang, Zhenzheng & Li, Jianping, 2016. "A geometric graph model for coauthorship networks," Journal of Informetrics, Elsevier, vol. 10(1), pages 299-311.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Huiying & Gao, Chao & Wang, Zhen, 2023. "Ranking academic institutions by means of institution–publication networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng Xie & Zonglin Xie & Miao Li & Jianping Li & Dongyun Yi, 2017. "Modeling the coevolution between citations and coauthorship of scientific papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(1), pages 483-507, July.
    2. Zheng Xie, 2019. "A cooperative game model for the multimodality of coauthorship networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 503-519, October.
    3. Zheng Xie, 2021. "A distributed hypergraph model for simulating the evolution of large coauthorship networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(6), pages 4609-4638, June.
    4. Xie, Zheng, 2020. "Predicting the number of coauthors for researchers: A learning model," Journal of Informetrics, Elsevier, vol. 14(2).
    5. Xie, Zheng, 2020. "Predicting publication productivity for researchers: A piecewise Poisson model," Journal of Informetrics, Elsevier, vol. 14(3).
    6. J. Sylvan Katz & Guillermo Armando Ronda-Pupo, 2019. "Cooperation, scale-invariance and complex innovation systems: a generalization," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 1045-1065, November.
    7. Xie, Zheng & Ouyang, Zhenzheng & Liu, Qi & Li, Jianping, 2016. "A geometric graph model for citation networks of exponentially growing scientific papers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 167-175.
    8. Massimo Franceschet, 2011. "Collaboration in computer science: A network science approach," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(10), pages 1992-2012, October.
    9. Xie, Qing & Zhang, Xinyuan & Kim, Giyeong & Song, Min, 2022. "Exploring the influence of coauthorship with top scientists on researchers’ affiliation, research topic, productivity, and impact," Journal of Informetrics, Elsevier, vol. 16(3).
    10. Abbasi, Alireza & Hossain, Liaquat & Leydesdorff, Loet, 2012. "Betweenness centrality as a driver of preferential attachment in the evolution of research collaboration networks," Journal of Informetrics, Elsevier, vol. 6(3), pages 403-412.
    11. Xie, Zheng & Ouyang, Zhenzheng & Li, Jianping, 2016. "A geometric graph model for coauthorship networks," Journal of Informetrics, Elsevier, vol. 10(1), pages 299-311.
    12. Jinseok Kim & Jana Diesner, 2019. "Formational bounds of link prediction in collaboration networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 687-706, May.
    13. Šubelj, Lovro & Fiala, Dalibor & Ciglarič, Tadej & Kronegger, Luka, 2019. "Convexity in scientific collaboration networks," Journal of Informetrics, Elsevier, vol. 13(1), pages 10-31.
    14. Deming Lin & Tianhui Gong & Wenbin Liu & Martin Meyer, 2020. "An entropy-based measure for the evolution of h index research," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2283-2298, December.
    15. Marian-Gabriel Hâncean & Matjaž Perc & Jürgen Lerner, 2021. "The coauthorship networks of the most productive European researchers," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 201-224, January.
    16. Vinayak, & Raghuvanshi, Adarsh & kshitij, Avinash, 2023. "Signatures of capacity development through research collaborations in artificial intelligence and machine learning," Journal of Informetrics, Elsevier, vol. 17(1).
    17. M. Ausloos, 2013. "A scientometrics law about co-authors and their ranking: the co-author core," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(3), pages 895-909, June.
    18. Kim, Jinseok & Diesner, Jana, 2015. "The effect of data pre-processing on understanding the evolution of collaboration networks," Journal of Informetrics, Elsevier, vol. 9(1), pages 226-236.
    19. Brent D Fegley & Vetle I Torvik, 2013. "Has Large-Scale Named-Entity Network Analysis Been Resting on a Flawed Assumption?," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-16, July.
    20. Jinseok Kim & Jinmo Kim & Jason Owen-Smith, 2019. "Generating automatically labeled data for author name disambiguation: an iterative clustering method," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 253-280, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:500:y:2018:i:c:p:189-198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.