An empirical comparison of machine learning methods for text-based sentiment analysis of online consumer reviews
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ijresmar.2021.10.011
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Artem Timoshenko & John R. Hauser, 2019. "Identifying Customer Needs from User-Generated Content," Marketing Science, INFORMS, vol. 38(1), pages 1-20, January.
- Vermeer, Susan A.M. & Araujo, Theo & Bernritter, Stefan F. & van Noort, Guda, 2019. "Seeing the wood for the trees: How machine learning can help firms in identifying relevant electronic word-of-mouth in social media," International Journal of Research in Marketing, Elsevier, vol. 36(3), pages 492-508.
- Sam Ransbotham & Nicholas H. Lurie & Hongju Liu, 2019. "Creation and Consumption of Mobile Word of Mouth: How Are Mobile Reviews Different?," Marketing Science, INFORMS, vol. 38(5), pages 773-792, September.
- Ashlee Humphreys & Rebecca Jen-Hui Wang & Eileen FischerEditor & Linda PriceAssociate Editor, 2018. "Automated Text Analysis for Consumer Research," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 44(6), pages 1274-1306.
- Omid Rafieian & Hema Yoganarasimhan, 2021. "Targeting and Privacy in Mobile Advertising," Marketing Science, INFORMS, vol. 40(2), pages 193-218, March.
- Nikolay Archak & Anindya Ghose & Panagiotis G. Ipeirotis, 2011. "Deriving the Pricing Power of Product Features by Mining Consumer Reviews," Management Science, INFORMS, vol. 57(8), pages 1485-1509, August.
- Yuchi Zhang & David Godes, 2018. "Learning from Online Social Ties," Marketing Science, INFORMS, vol. 37(3), pages 425-444, May.
- Hartmann, Jochen & Huppertz, Juliana & Schamp, Christina & Heitmann, Mark, 2019. "Comparing automated text classification methods," International Journal of Research in Marketing, Elsevier, vol. 36(1), pages 20-38.
- Anindya Ghose & Panagiotis G. Ipeirotis & Beibei Li, 2012. "Designing Ranking Systems for Hotels on Travel Search Engines by Mining User-Generated and Crowdsourced Content," Marketing Science, INFORMS, vol. 31(3), pages 493-520, May.
- Seshadri Tirunillai & Gerard J. Tellis, 2017. "Does Offline TV Advertising Affect Online Chatter? Quasi-Experimental Analysis Using Synthetic Control," Marketing Science, INFORMS, vol. 36(6), pages 862-878, November.
- Ishita Chakraborty & Minkyung Kim & K. Sudhir, 2019. "Attribute Sentiment Scoring With Online Text Reviews : Accounting for Language Structure and Attribute Self-Selection," Cowles Foundation Discussion Papers 2176R2, Cowles Foundation for Research in Economics, Yale University, revised Jun 2021.
- Xue Bai & James R. Marsden & William T. Ross & Gang Wang, 2020. "A Note on the Impact of Daily Deals on Local Retailers’ Online Reputation: Mediation Effects of the Consumer Experience," Information Systems Research, INFORMS, vol. 31(4), pages 1132-1143, December.
- Seshadri Tirunillai & Gerard J. Tellis, 2012. "Does Chatter Really Matter? Dynamics of User-Generated Content and Stock Performance," Marketing Science, INFORMS, vol. 31(2), pages 198-215, March.
- Andrews, Rick L. & Currim, Imran S. & Leeflang, Peter S. H., 2011. "A Comparison of Sales Response Predictions From Demand Models Applied to Store-Level versus Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(2), pages 319-326.
- Joel H. Steckel & Wilfried R. Vanhonacker, 1993. "Cross-Validating Regression Models in Marketing Research," Marketing Science, INFORMS, vol. 12(4), pages 415-427.
- Kübler, Raoul V. & Colicev, Anatoli & Pauwels, Koen H., 2020. "Social Media's Impact on the Consumer Mindset: When to Use Which Sentiment Extraction Tool?," Journal of Interactive Marketing, Elsevier, vol. 50(C), pages 136-155.
- Arun Rai, 2020. "Explainable AI: from black box to glass box," Journal of the Academy of Marketing Science, Springer, vol. 48(1), pages 137-141, January.
- Green, Paul E & Srinivasan, V, 1978. "Conjoint Analysis in Consumer Research: Issues and Outlook," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 5(2), pages 103-123, Se.
- Hema Yoganarasimhan, 2020. "Search Personalization Using Machine Learning," Management Science, INFORMS, vol. 66(3), pages 1045-1070, March.
- Joachim Büschken & Greg M. Allenby, 2016. "Sentence-Based Text Analysis for Customer Reviews," Marketing Science, INFORMS, vol. 35(6), pages 953-975, November.
- Zoey Chen, 2017. "Social Acceptance and Word of Mouth: How the Motive to Belong Leads to Divergent WOM with Strangers and Friends," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 44(3), pages 613-632.
- Chunhua Wu, 2015. "Matching Value and Market Design in Online Advertising Networks: An Empirical Analysis," Marketing Science, INFORMS, vol. 34(6), pages 906-921, November.
- Anindya Ghose & Panagiotis G. Ipeirotis & Beibei Li, 2019. "Modeling Consumer Footprints on Search Engines: An Interplay with Social Media," Management Science, INFORMS, vol. 65(3), pages 1363-1385, March.
- Rick L. Andrews & Andrew Ainslie & Imran S. Currim, 2008. "On the Recoverability of Choice Behaviors with Random Coefficients Choice Models in the Context of Limited Data and Unobserved Effects," Management Science, INFORMS, vol. 54(1), pages 83-99, January.
- Tom van Laer & Jennifer Edson Escalas & Stephan Ludwig & Ellis A van den Hende & Gita V Johar & J Jeffrey Inman & Paul M Herr, 2019. "What Happens in Vegas Stays on TripAdvisor? A Theory and Technique to Understand Narrativity in Consumer Reviews," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 46(2), pages 267-285.
- Dinesh Puranam & Vishal Narayan & Vrinda Kadiyali, 2017. "The Effect of Calorie Posting Regulation on Consumer Opinion: A Flexible Latent Dirichlet Allocation Model with Informative Priors," Marketing Science, INFORMS, vol. 36(5), pages 726-746, September.
- Rick L. Andrews & Imran S. Currim & Peter S. H. Leeflang, 2011. "A Comparison of Sales Response Predictions From Demand Models Applied to Store-Level versus Panel Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(2), pages 319-326, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mingyang Zhang & Heyan Xu & Ning Ma & Xinglin Pan, 2022. "Intelligent Vehicle Sales Prediction Based on Online Public Opinion and Online Search Index," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
- Hartmann, Jochen & Heitmann, Mark & Siebert, Christian & Schamp, Christina, 2023. "More than a Feeling: Accuracy and Application of Sentiment Analysis," International Journal of Research in Marketing, Elsevier, vol. 40(1), pages 75-87.
- Gerrath, Maximilian H.E.E. & Mafael, Alexander & Ulqinaku, Aulona & Biraglia, Alessandro, 2023. "Service failures in times of crisis: An analysis of eWOM emotionality," Journal of Business Research, Elsevier, vol. 154(C).
- Saeed Abbas Shah & Qasim Raza & Huzaifa Ather Rajar & Mirza Talha Baig & Salman Ahmed Mithiani & Munzir Ahmed & Muhammad Shoaib & Sidra Malik, 2024. "Consumer Behavior and Preferences Shift: The Impact of Boycotting Imported Brands on Local Product Demand," Bulletin of Business and Economics (BBE), Research Foundation for Humanity (RFH), vol. 13(2), pages 455-467.
- Kadić-Maglajlić, Selma & Lages, Cristiana R. & Pantano, Eleonora, 2024. "No time to lie: Examining the identity of pro-vaccination and anti-vaccination supporters through user-generated content," Social Science & Medicine, Elsevier, vol. 347(C).
- Chao Gu & Tingting Huang & Wei Wei & Chun Yang & Jiangjie Chen & Wei Miao & Shuyuan Lin & Hanchu Sun & Jie Sun, 2023. "The Effect of Using Augmented Reality Technology in Takeaway Food Packaging to Improve Young Consumers’ Negative Evaluations," Agriculture, MDPI, vol. 13(2), pages 1-35, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Venkatesh Shankar & Sohil Parsana, 2022. "An overview and empirical comparison of natural language processing (NLP) models and an introduction to and empirical application of autoencoder models in marketing," Journal of the Academy of Marketing Science, Springer, vol. 50(6), pages 1324-1350, November.
- Mengxia Zhang & Lan Luo, 2023. "Can Consumer-Posted Photos Serve as a Leading Indicator of Restaurant Survival? Evidence from Yelp," Management Science, INFORMS, vol. 69(1), pages 25-50, January.
- Grewal, Dhruv & Herhausen, Dennis & Ludwig, Stephan & Villarroel Ordenes, Francisco, 2022. "The Future of Digital Communication Research: Considering Dynamics and Multimodality," Journal of Retailing, Elsevier, vol. 98(2), pages 224-240.
- Wang, Xin (Shane) & Ryoo, Jun Hyun (Joseph) & Bendle, Neil & Kopalle, Praveen K., 2021. "The role of machine learning analytics and metrics in retailing research," Journal of Retailing, Elsevier, vol. 97(4), pages 658-675.
- Carlson, Keith & Kopalle, Praveen K. & Riddell, Allen & Rockmore, Daniel & Vana, Prasad, 2023. "Complementing human effort in online reviews: A deep learning approach to automatic content generation and review synthesis," International Journal of Research in Marketing, Elsevier, vol. 40(1), pages 54-74.
- Roelen-Blasberg, Tobias & Habel, Johannes & Klarmann, Martin, 2023. "Automated inference of product attributes and their importance from user-generated content: Can we replace traditional market research?," International Journal of Research in Marketing, Elsevier, vol. 40(1), pages 164-188.
- Jonah Berger & Grant Packard & Reihane Boghrati & Ming Hsu & Ashlee Humphreys & Andrea Luangrath & Sarah Moore & Gideon Nave & Christopher Olivola & Matthew Rocklage, 2022. "Marketing insights from text analysis," Marketing Letters, Springer, vol. 33(3), pages 365-377, September.
- Bitty Balducci & Detelina Marinova, 2018. "Unstructured data in marketing," Journal of the Academy of Marketing Science, Springer, vol. 46(4), pages 557-590, July.
- Ming-Hui Huang & Roland T. Rust, 2021. "A strategic framework for artificial intelligence in marketing," Journal of the Academy of Marketing Science, Springer, vol. 49(1), pages 30-50, January.
- Ngai, Eric W.T. & Wu, Yuanyuan, 2022. "Machine learning in marketing: A literature review, conceptual framework, and research agenda," Journal of Business Research, Elsevier, vol. 145(C), pages 35-48.
- Soumya Mukhopadhyay & V Kumar & Amalesh Sharma & Tuck Siong Chung, 2022. "Impact of review narrativity on sales in a competitive environment," Production and Operations Management, Production and Operations Management Society, vol. 31(6), pages 2538-2556, June.
- Hasmat Malik & Asyraf Afthanorhan & Noor Aina Amirah & Nuzhat Fatema, 2021. "Machine Learning Approach for Targeting and Recommending a Product for Project Management," Mathematics, MDPI, vol. 9(16), pages 1-29, August.
- Dinesh Puranam & Vrinda Kadiyali & Vishal Narayan, 2021. "The Impact of Increase in Minimum Wages on Consumer Perceptions of Service: A Transformer Model of Online Restaurant Reviews," Marketing Science, INFORMS, vol. 40(5), pages 985-1004, September.
- Xin (Shane) Wang & Neil Bendle & Yinjie Pan, 2024. "Beyond text: Marketing strategy in a world turned upside down," Journal of the Academy of Marketing Science, Springer, vol. 52(4), pages 939-954, July.
- Dominik Gutt & Jürgen Neumann & Steffen Zimmermann & Dennis Kundisch & Jianqing Chen, 2018. "Design of Review Systems - A Strategic Instrument to shape Online Review Behavior and Economic Outcomes," Working Papers Dissertations 42, Paderborn University, Faculty of Business Administration and Economics.
- Li, Xi & Shi, Mengze & Wang, Xin (Shane), 2019. "Video mining: Measuring visual information using automatic methods," International Journal of Research in Marketing, Elsevier, vol. 36(2), pages 216-231.
- Gensler, Sonja & Oehring, Karlo & Wiesel, Thorsten, 2024. "Reported and communicated shifts in strategic emphasis and firm performance," International Journal of Research in Marketing, Elsevier, vol. 41(2), pages 220-240.
- Oetzel, Sebastian & Graf, Denise, 2023. "Fragen oder Zuhören? Ein Vergleich von Kundenbefragungen und User Generated Content," PraxisWISSEN Marketing: German Journal of Marketing, AfM – Arbeitsgemeinschaft für Marketing, vol. 8(01/2023), pages 91-107.
- Xiao Liu & Param Vir Singh & Kannan Srinivasan, 2016. "A Structured Analysis of Unstructured Big Data by Leveraging Cloud Computing," Marketing Science, INFORMS, vol. 35(3), pages 363-388, May.
- Oded Netzer & Ronen Feldman & Jacob Goldenberg & Moshe Fresko, 2012. "Mine Your Own Business: Market-Structure Surveillance Through Text Mining," Marketing Science, INFORMS, vol. 31(3), pages 521-543, May.
More about this item
Keywords
Automated text analysis; Sentiment analysis; Online reviews; User generated content; Machine learning; Natural language processing;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijrema:v:39:y:2022:i:1:p:1-19. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-research-in-marketing/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.