IDEAS home Printed from https://ideas.repec.org/a/eee/ijoais/v55y2024ics1467089524000484.html
   My bibliography  Save this article

A scoping review of ChatGPT research in accounting and finance

Author

Listed:
  • Dong, Mengming Michael
  • Stratopoulos, Theophanis C.
  • Wang, Victor Xiaoqi

Abstract

This paper provides a review of recent publications and working papers on ChatGPT and related Large Language Models (LLMs) in accounting and finance. The aim is to understand the current state of research in these two areas and identify potential research opportunities for future inquiry. We identify three common themes from these earlier studies. The first theme focuses on applications of ChatGPT and LLMs in various fields of accounting and finance. The second theme utilizes ChatGPT and LLMs as a new research tool by leveraging their capabilities such as classification, summarization, and text generation. The third theme investigates implications of LLM adoption for accounting and finance professionals, as well as for various organizations and sectors. While these earlier studies provide valuable insights, they leave many important questions unanswered or partially addressed. We propose venues for further exploration and provide technical guidance for researchers seeking to employ ChatGPT and related LLMs as a tool for their research.

Suggested Citation

  • Dong, Mengming Michael & Stratopoulos, Theophanis C. & Wang, Victor Xiaoqi, 2024. "A scoping review of ChatGPT research in accounting and finance," International Journal of Accounting Information Systems, Elsevier, vol. 55(C).
  • Handle: RePEc:eee:ijoais:v:55:y:2024:i:c:s1467089524000484
    DOI: 10.1016/j.accinf.2024.100715
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1467089524000484
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.accinf.2024.100715?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Domonkos F. Vamossy & Rolf Skog, 2021. "EmTract: Extracting Emotions from Social Media," Papers 2112.03868, arXiv.org, revised Jun 2023.
    2. Boyu Zhang & Hongyang Yang & Xiao-Yang Liu, 2023. "Instruct-FinGPT: Financial Sentiment Analysis by Instruction Tuning of General-Purpose Large Language Models," Papers 2306.12659, arXiv.org.
    3. Michael P. Devereux & John Vella, 2015. "Are We Heading towards a Corporate Tax System Fit for the 21st Century?," ifo DICE Report, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 12(04), pages 03-07, January.
    4. Saggu, Aman & Ante, Lennart, 2023. "The influence of ChatGPT on artificial intelligence related crypto assets: Evidence from a synthetic control analysis," Finance Research Letters, Elsevier, vol. 55(PB).
    5. Brian W. Nocco & René M. Stulz, 2006. "Enterprise Risk Management: Theory and Practice," Journal of Applied Corporate Finance, Morgan Stanley, vol. 18(4), pages 8-20, September.
    6. Marius Hofert, 2023. "Assessing ChatGPT’s Proficiency in Quantitative Risk Management," Risks, MDPI, vol. 11(9), pages 1-29, September.
    7. Anton Korinek, 2023. "Generative AI for Economic Research: Use Cases and Implications for Economists," Journal of Economic Literature, American Economic Association, vol. 61(4), pages 1281-1317, December.
    8. Niszczota, Paweł & Abbas, Sami, 2023. "GPT has become financially literate: Insights from financial literacy tests of GPT and a preliminary test of how people use it as a source of advice," Finance Research Letters, Elsevier, vol. 58(PA).
    9. Harjit Singh & Avneet Singh, 2023. "ChatGPT: Systematic Review, Applications, and Agenda for Multidisciplinary Research," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 21(2), pages 193-212, April.
    10. Udit Gupta, 2023. "GPT-InvestAR: Enhancing Stock Investment Strategies through Annual Report Analysis with Large Language Models," Papers 2309.03079, arXiv.org.
    11. Kirtac, Kemal & Germano, Guido, 2024. "Sentiment trading with large language models," Finance Research Letters, Elsevier, vol. 62(PB).
    12. Ko, Hyungjin & Lee, Jaewook, 2024. "Can ChatGPT improve investment decisions? From a portfolio management perspective," Finance Research Letters, Elsevier, vol. 64(C).
    13. Susana Álvarez-Díez & J. Samuel Baixauli-Soler & Anna Kondratenko & Gabriel Lozano-Reina, 2024. "Dividend announcement and the value of sentiment analysis," Journal of Management Analytics, Taylor & Francis Journals, vol. 11(2), pages 161-181, April.
    14. Paul Glasserman & Caden Lin, 2023. "Assessing Look-Ahead Bias in Stock Return Predictions Generated By GPT Sentiment Analysis," Papers 2309.17322, arXiv.org.
    15. Beyer, Anne & Cohen, Daniel A. & Lys, Thomas Z. & Walther, Beverly R., 2010. "The financial reporting environment: Review of the recent literature," Journal of Accounting and Economics, Elsevier, vol. 50(2-3), pages 296-343, December.
    16. Shijie Wu & Ozan Irsoy & Steven Lu & Vadim Dabravolski & Mark Dredze & Sebastian Gehrmann & Prabhanjan Kambadur & David Rosenberg & Gideon Mann, 2023. "BloombergGPT: A Large Language Model for Finance," Papers 2303.17564, arXiv.org, revised Dec 2023.
    17. Leippold, Markus, 2023. "Sentiment spin: Attacking financial sentiment with GPT-3," Finance Research Letters, Elsevier, vol. 55(PB).
    18. Stephen A. Zeff, 2013. "The objectives of financial reporting: a historical survey and analysis," Accounting and Business Research, Taylor & Francis Journals, vol. 43(4), pages 262-327, August.
    19. Hassnian Ali & Ahmet Faruk Aysan, 2023. "What will ChatGPT revolutionize in the financial industry?," Modern Finance, Modern Finance Institute, vol. 1(1), pages 116-129.
    20. Michelle Alexopoulos, 2011. "Read All about It!! What Happens Following a Technology Shock?," American Economic Review, American Economic Association, vol. 101(4), pages 1144-1179, June.
    21. Kausik, B.N., 2023. "Long Tails & the Impact of GPT on Labor," MPRA Paper 117063, University Library of Munich, Germany.
    22. Markus Leippold, 2023. "Sentiment Spin: Attacking Financial Sentiment with GPT-3," Swiss Finance Institute Research Paper Series 23-11, Swiss Finance Institute.
    23. Mélanie Roussy & Alexandre Perron, 2018. "New Perspectives in Internal Audit Research: A Structured Literature Review," Accounting Perspectives, John Wiley & Sons, vol. 17(3), pages 345-385, September.
    24. Hongyang Yang & Xiao-Yang Liu & Christina Dan Wang, 2023. "FinGPT: Open-Source Financial Large Language Models," Papers 2306.06031, arXiv.org.
    25. Tyna Eloundou & Sam Manning & Pamela Mishkin & Daniel Rock, 2023. "GPTs are GPTs: An Early Look at the Labor Market Impact Potential of Large Language Models," Papers 2303.10130, arXiv.org, revised Aug 2023.
    26. Ghio, Alessandro, 2024. "Democratizing academic research with Artificial Intelligence: The misleading case of language," CRITICAL PERSPECTIVES ON ACCOUNTING, Elsevier, vol. 98(C).
    27. Jingwei Ni & Julia Bingler & Chiara Colesanti Senni & Mathias Kraus & Glen Gostlow & Tobias Schimanski & Dominik Stammbach & Saeid Vaghefi & Qian Wang & Nicolas Webersinke & Tobias Wekhof & Tingyu Yu , 2023. "chatReport: Democratizing Sustainability Disclosure Analysis through LLM-based Tools," Swiss Finance Institute Research Paper Series 23-111, Swiss Finance Institute.
    28. Xiang Hui & Oren Reshef & Luofeng Zhou, 2023. "The Short-Term Effects of Generative Artificial Intelligence on Employment: Evidence from an Online Labor Market," CESifo Working Paper Series 10601, CESifo.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julian Junyan Wang & Victor Xiaoqi Wang, 2024. "Leveraging Large Language Models to Democratize Access to Costly Financial Datasets for Academic Research," Papers 2412.02065, arXiv.org.
    2. Junhua Liu, 2024. "A Survey of Financial AI: Architectures, Advances and Open Challenges," Papers 2411.12747, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuqi Nie & Yaxuan Kong & Xiaowen Dong & John M. Mulvey & H. Vincent Poor & Qingsong Wen & Stefan Zohren, 2024. "A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges," Papers 2406.11903, arXiv.org.
    2. Yinheng Li & Shaofei Wang & Han Ding & Hang Chen, 2023. "Large Language Models in Finance: A Survey," Papers 2311.10723, arXiv.org, revised Jul 2024.
    3. Masanori Hirano & Kentaro Imajo, 2024. "The Construction of Instruction-tuned LLMs for Finance without Instruction Data Using Continual Pretraining and Model Merging," Papers 2409.19854, arXiv.org.
    4. Olamilekan Shobayo & Sidikat Adeyemi-Longe & Olusogo Popoola & Bayode Ogunleye, 2024. "Innovative Sentiment Analysis and Prediction of Stock Price Using FinBERT, GPT-4 and Logistic Regression: A Data-Driven Approach," Papers 2412.06837, arXiv.org.
    5. Sui, Cong & Wang, Shuhan & Zheng, Wei, 2024. "Sentiment as a shipping market predictor: Testing market-specific language models," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 189(C).
    6. Julian Junyan Wang & Victor Xiaoqi Wang, 2024. "Leveraging Large Language Models to Democratize Access to Costly Financial Datasets for Academic Research," Papers 2412.02065, arXiv.org.
    7. Rolf Uwe Fülbier & Thorsten Sellhorn, 2023. "Understanding and improving the language of business: How accounting and corporate reporting research can better serve business and society," Journal of Business Economics, Springer, vol. 93(6), pages 1089-1124, August.
    8. Bingler, Julia Anna & Kraus, Mathias & Leippold, Markus & Webersinke, Nicolas, 2024. "How cheap talk in climate disclosures relates to climate initiatives, corporate emissions, and reputation risk," Journal of Banking & Finance, Elsevier, vol. 164(C).
    9. Thanos Konstantinidis & Giorgos Iacovides & Mingxue Xu & Tony G. Constantinides & Danilo Mandic, 2024. "FinLlama: Financial Sentiment Classification for Algorithmic Trading Applications," Papers 2403.12285, arXiv.org.
    10. Smales, Lee A., 2023. "Classification of RBA monetary policy announcements using ChatGPT," Finance Research Letters, Elsevier, vol. 58(PC).
    11. Hoyoung Lee & Youngsoo Choi & Yuhee Kwon, 2024. "Quantifying Qualitative Insights: Leveraging LLMs to Market Predict," Papers 2411.08404, arXiv.org.
    12. Shengkun Wang & Taoran Ji & Linhan Wang & Yanshen Sun & Shang-Ching Liu & Amit Kumar & Chang-Tien Lu, 2024. "StockTime: A Time Series Specialized Large Language Model Architecture for Stock Price Prediction," Papers 2409.08281, arXiv.org.
    13. Cascino, Stefano & Clatworthy, Mark A. & Osma, Beatriz Garcia & Gassen, Joachim & Imam, Shahed, 2021. "The usefulness of financial accounting information: evidence from the field," LSE Research Online Documents on Economics 107569, London School of Economics and Political Science, LSE Library.
    14. Shun Yiu & Rob Seamans & Manav Raj & Ted Liu, 2024. "Strategic Responses to Technological Change: Evidence from ChatGPT and Upwork," Papers 2403.15262, arXiv.org, revised Apr 2024.
    15. Mala, Rajni & Chand, Parmod, 2015. "Commentary on phase A of the revised conceptual framework: Implications for global financial reporting," Advances in accounting, Elsevier, vol. 31(2), pages 209-218.
    16. Wentao Zhang & Lingxuan Zhao & Haochong Xia & Shuo Sun & Jiaze Sun & Molei Qin & Xinyi Li & Yuqing Zhao & Yilei Zhao & Xinyu Cai & Longtao Zheng & Xinrun Wang & Bo An, 2024. "A Multimodal Foundation Agent for Financial Trading: Tool-Augmented, Diversified, and Generalist," Papers 2402.18485, arXiv.org, revised Jun 2024.
    17. Li Xian Liu & Zhiyue Sun & Kunpeng Xu & Chao Chen, 2024. "AI-Driven Financial Analysis: Exploring ChatGPT’s Capabilities and Challenges," IJFS, MDPI, vol. 12(3), pages 1-35, June.
    18. Michelle Alexopoulos & Jon Cohen, 2024. "Tracking technical change: Past, present and future," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 57(4), pages 1047-1087, November.
    19. Yixuan Liang & Yuncong Liu & Boyu Zhang & Christina Dan Wang & Hongyang Yang, 2024. "FinGPT: Enhancing Sentiment-Based Stock Movement Prediction with Dissemination-Aware and Context-Enriched LLMs," Papers 2412.10823, arXiv.org.
    20. Stefania Albanesi & Wabitsch Alena & António Dias da Silva & Juan F. Jimeno & Ana Lamo, 2024. "New Technologies and Jobs in Europe," Opportunity and Inclusive Growth Institute Working Papers 105, Federal Reserve Bank of Minneapolis.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijoais:v:55:y:2024:i:c:s1467089524000484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-accounting-information-systems/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.