IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v64y2024ics154461232400463x.html
   My bibliography  Save this article

Can ChatGPT improve investment decisions? From a portfolio management perspective

Author

Listed:
  • Ko, Hyungjin
  • Lee, Jaewook

Abstract

We examine ChatGPT, a prominent Large Language Model (LLM), in supporting portfolio management with a focus on asset selection and diversification through quantitative methods. We use ChatGPT to select assets from various asset classes and evaluate the diversification effect of its selections. Our results suggest that ChatGPT’s selections are statistically significantly better in diversity index than randomly selected assets. We also construct portfolios based on ChatGPT’s selections and find that they outperform portfolios built on randomly selected assets. Overall, our study contributes to a better understanding of the role of LLMs like ChatGPT as potential assistants for portfolio managers.

Suggested Citation

  • Ko, Hyungjin & Lee, Jaewook, 2024. "Can ChatGPT improve investment decisions? From a portfolio management perspective," Finance Research Letters, Elsevier, vol. 64(C).
  • Handle: RePEc:eee:finlet:v:64:y:2024:i:c:s154461232400463x
    DOI: 10.1016/j.frl.2024.105433
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S154461232400463X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2024.105433?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pawe{l} Niszczota & Sami Abbas, 2023. "GPT has become financially literate: Insights from financial literacy tests of GPT and a preliminary test of how people use it as a source of advice," Papers 2309.00649, arXiv.org, revised Sep 2024.
    2. Seongwan Park & Seungju Lee & Yunyoung Lee & Hyungjin Ko & Bumho Son & Jaewook Lee & Huisu Jang, 2023. "Price co-movements in decentralized financial markets," Applied Economics Letters, Taylor & Francis Journals, vol. 30(21), pages 3075-3082, December.
    3. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    4. Ko, Hyungjin & Byun, Junyoung & Lee, Jaewook, 2023. "A privacy-preserving robo-advisory system with the Black-Litterman portfolio model: A new framework and insights into investor behavior," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 89(C).
    5. Ko, Hyungjin & Lee, Seungyun & Lee, Jaewook, 2024. "Sequence and longevity risks of South Korean retirees: Insights and potential remedies," Pacific-Basin Finance Journal, Elsevier, vol. 83(C).
    6. Ko, Hyungjin & Son, Bumho & Lee, Jaewook, 2024. "Portfolio insurance strategy in the cryptocurrency market," Research in International Business and Finance, Elsevier, vol. 67(PA).
    7. Alejandro Lopez-Lira & Yuehua Tang, 2023. "Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models," Papers 2304.07619, arXiv.org, revised Sep 2024.
    8. Ko, Hyungjin & Son, Bumho & Lee, Jaewook, 2024. "A novel integration of the Fama–French and Black–Litterman models to enhance portfolio management," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
    9. Suleyman Basak & Georgy Chabakauri, 2010. "Dynamic Mean-Variance Asset Allocation," The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 2970-3016, August.
    10. Dowling, Michael & Lucey, Brian, 2023. "ChatGPT for (Finance) research: The Bananarama Conjecture," Finance Research Letters, Elsevier, vol. 53(C).
    11. Shapira, Zur & Venezia, Itzhak, 2001. "Patterns of behavior of professionally managed and independent investors," Journal of Banking & Finance, Elsevier, vol. 25(8), pages 1573-1587, August.
    12. John H. Cochrane, 2014. "A Mean-Variance Benchmark for Intertemporal Portfolio Theory," Journal of Finance, American Finance Association, vol. 69(1), pages 1-49, February.
    13. Brad M. Barber & Terrance Odean, 2000. "Trading Is Hazardous to Your Wealth: The Common Stock Investment Performance of Individual Investors," Journal of Finance, American Finance Association, vol. 55(2), pages 773-806, April.
    14. Hyungjin Ko & Jaewook Lee & Junyoung Byun & Bumho Son & Saerom Park, 2019. "Loss-Driven Adversarial Ensemble Deep Learning for On-Line Time Series Analysis," Sustainability, MDPI, vol. 11(12), pages 1-24, June.
    15. Avramov, Doron & Cheng, Si & Lioui, Abraham & Tarelli, Andrea, 2022. "Sustainable investing with ESG rating uncertainty," Journal of Financial Economics, Elsevier, vol. 145(2), pages 642-664.
    16. Pelster, Matthias & Val, Joel, 2024. "Can ChatGPT assist in picking stocks?," Finance Research Letters, Elsevier, vol. 59(C).
    17. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    18. Oehler, Andreas & Horn, Matthias, 2024. "Does ChatGPT provide better advice than robo-advisors?," Finance Research Letters, Elsevier, vol. 60(C).
    19. Oleksandr Romanko & Akhilesh Narayan & Roy H. Kwon, 2023. "ChatGPT-based Investment Portfolio Selection," Papers 2308.06260, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minh Tam Tammy Schlosky & Serkan Karadas & Sterling Raskie, 2024. "ChatGPT, Help! I Am in Financial Trouble," JRFM, MDPI, vol. 17(6), pages 1-39, June.
    2. Yuqi Nie & Yaxuan Kong & Xiaowen Dong & John M. Mulvey & H. Vincent Poor & Qingsong Wen & Stefan Zohren, 2024. "A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges," Papers 2406.11903, arXiv.org.
    3. Xuewen Han & Neng Wang & Shangkun Che & Hongyang Yang & Kunpeng Zhang & Sean Xin Xu, 2024. "Enhancing Investment Analysis: Optimizing AI-Agent Collaboration in Financial Research," Papers 2411.04788, arXiv.org.
    4. Dong, Mengming Michael & Stratopoulos, Theophanis C. & Wang, Victor Xiaoqi, 2024. "A scoping review of ChatGPT research in accounting and finance," International Journal of Accounting Information Systems, Elsevier, vol. 55(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ko, Hyungjin & Son, Bumho & Lee, Jaewook, 2024. "A novel integration of the Fama–French and Black–Litterman models to enhance portfolio management," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
    2. Simaan, Majeed & Simaan, Yusif & Tang, Yi, 2018. "Estimation error in mean returns and the mean-variance efficient frontier," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 109-124.
    3. Guo, Fusen & Li, Feng & Lu, Xiaomeng, 2024. "Does financial advisors improve portfolio efficiency for individual investors? Evidence from large-scale microdata," International Review of Economics & Finance, Elsevier, vol. 91(C), pages 400-412.
    4. Zhou, Zhongbao & Xiao, Helu & Yin, Jialing & Zeng, Ximei & Lin, Ling, 2016. "Pre-commitment vs. time-consistent strategies for the generalized multi-period portfolio optimization with stochastic cash flows," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 187-202.
    5. Guiso, Luigi & Sodini, Paolo, 2013. "Household Finance: An Emerging Field," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1397-1532, Elsevier.
    6. Xie, Jun & Yang, Chunpeng, 2013. "Shouldn't all eggs be putted in one basket? A portfolio model based on investor sentiment and inertial thinking," Economic Modelling, Elsevier, vol. 35(C), pages 682-688.
    7. Munk, Claus, 2020. "A mean-variance benchmark for household portfolios over the life cycle," Journal of Banking & Finance, Elsevier, vol. 116(C).
    8. Phelim Boyle & Lorenzo Garlappi & Raman Uppal & Tan Wang, 2012. "Keynes Meets Markowitz: The Trade-Off Between Familiarity and Diversification," Management Science, INFORMS, vol. 58(2), pages 253-272, February.
    9. Minh Tam Tammy Schlosky & Serkan Karadas & Sterling Raskie, 2024. "ChatGPT, Help! I Am in Financial Trouble," JRFM, MDPI, vol. 17(6), pages 1-39, June.
    10. Ko, Hyungjin & Byun, Junyoung & Lee, Jaewook, 2023. "A privacy-preserving robo-advisory system with the Black-Litterman portfolio model: A new framework and insights into investor behavior," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 89(C).
    11. Lioui, Abraham, 2013. "Time consistent vs. time inconsistent dynamic asset allocation: Some utility cost calculations for mean variance preferences," Journal of Economic Dynamics and Control, Elsevier, vol. 37(5), pages 1066-1096.
    12. Keffert, Henk, 2024. "Robo-advising: Optimal investment with mismeasured and unstable risk preferences," European Journal of Operational Research, Elsevier, vol. 315(1), pages 378-392.
    13. Kourtidis, Dimitrios & Šević, Željko & Chatzoglou, Prodromos, 2011. "Investors’ trading activity: A behavioural perspective and empirical results," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 40(5), pages 548-557.
    14. Pun, Chi Seng, 2018. "Time-consistent mean-variance portfolio selection with only risky assets," Economic Modelling, Elsevier, vol. 75(C), pages 281-292.
    15. Andriosopoulos, Kostas & Nomikos, Nikos, 2014. "Performance replication of the Spot Energy Index with optimal equity portfolio selection: Evidence from the UK, US and Brazilian markets," European Journal of Operational Research, Elsevier, vol. 234(2), pages 571-582.
    16. Malavasi, Matteo & Ortobelli Lozza, Sergio & Trück, Stefan, 2021. "Second order of stochastic dominance efficiency vs mean variance efficiency," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1192-1206.
    17. Xiangyu Cui & Xun Li & Duan Li & Yun Shi, 2014. "Time Consistent Behavior Portfolio Policy for Dynamic Mean-Variance Formulation," Papers 1408.6070, arXiv.org, revised Aug 2015.
    18. Sleire, Anders D. & Støve, Bård & Otneim, Håkon & Berentsen, Geir Drage & Tjøstheim, Dag & Haugen, Sverre Hauso, 2022. "Portfolio allocation under asymmetric dependence in asset returns using local Gaussian correlations," Finance Research Letters, Elsevier, vol. 46(PB).
    19. David E. Allen & Michael McAleer & Abhay K. Singh, 2016. "A Multi-Criteria Portfolio Analysis of Hedge Fund Strategies," Documentos de Trabajo del ICAE 2017-03, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    20. Bao, Te & Diks, Cees & Li, Hao, 2018. "A generalized CAPM model with asymmetric power distributed errors with an application to portfolio construction," Economic Modelling, Elsevier, vol. 68(C), pages 611-621.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:64:y:2024:i:c:s154461232400463x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.