IDEAS home Printed from https://ideas.repec.org/p/ces/ceswps/_10601.html
   My bibliography  Save this paper

The Short-Term Effects of Generative Artificial Intelligence on Employment: Evidence from an Online Labor Market

Author

Listed:
  • Xiang Hui
  • Oren Reshef
  • Luofeng Zhou

Abstract

Generative Artificial Intelligence (AI) holds the potential to either complement knowledge workers by increasing their productivity or substitute them entirely. We examine the short-term effects of the recent release of the large language model (LLM), ChatGPT, on the employment outcomes of freelancers on a large online platform. We find that freelancers in highly affected occupations suffer from the introduction of generative AI, experiencing reductions in both employment and earnings. We find similar effects studying the release of other image-based, generative AI models. Exploring the heterogeneity by freelancers’ employment history, we do not find evidence that high-quality service, measured by their past performance and employment, moderates the adverse effects on employment. In fact, we find suggestive evidence that top freelancers are disproportionately affected by AI. These results suggest that in the short term generative AI reduces overall demand for knowledge workers of all types, and may have the potential to narrow gaps among workers.

Suggested Citation

  • Xiang Hui & Oren Reshef & Luofeng Zhou, 2023. "The Short-Term Effects of Generative Artificial Intelligence on Employment: Evidence from an Online Labor Market," CESifo Working Paper Series 10601, CESifo.
  • Handle: RePEc:ces:ceswps:_10601
    as

    Download full text from publisher

    File URL: https://www.cesifo.org/DocDL/cesifo1_wp10601.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edward W. Felten & Manav Raj & Robert Seamans, 2018. "A Method to Link Advances in Artificial Intelligence to Occupational Abilities," AEA Papers and Proceedings, American Economic Association, vol. 108, pages 54-57, May.
    2. Daron Acemoglu & David Autor & Jonathon Hazell & Pascual Restrepo, 2022. "Artificial Intelligence and Jobs: Evidence from Online Vacancies," Journal of Labor Economics, University of Chicago Press, vol. 40(S1), pages 293-340.
    3. Erik Brynjolfsson & Xiang Hui & Meng Liu, 2019. "Does Machine Translation Affect International Trade? Evidence from a Large Digital Platform," Management Science, INFORMS, vol. 65(12), pages 5449-5460, December.
    4. Moshe A. Barach & John J. Horton, 2021. "How Do Employers Use Compensation History? Evidence from a Field Experiment," Journal of Labor Economics, University of Chicago Press, vol. 39(1), pages 193-218.
    5. David H. Autor & David Dorn, 2013. "The Growth of Low-Skill Service Jobs and the Polarization of the US Labor Market," American Economic Review, American Economic Association, vol. 103(5), pages 1553-1597, August.
    6. David H. Autor & Frank Levy & Richard J. Murnane, 2003. "The skill content of recent technological change: an empirical exploration," Proceedings, Federal Reserve Bank of San Francisco, issue Nov.
    7. Bo Cowgill & Fabrizio Dell'Acqua & Samuel Deng & Daniel Hsu & Nakul Verma & Augustin Chaintreau, 2020. "Biased Programmers? Or Biased Data? A Field Experiment in Operationalizing AI Ethics," Papers 2012.02394, arXiv.org.
    8. Daron Acemoglu & Pascual Restrepo, 2018. "Artificial Intelligence, Automation, and Work," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 197-236, National Bureau of Economic Research, Inc.
    9. Helpman, Elhanan & Trajtenberg, Manuel, 1994. "A Time to Sow and a Time to Reap: Growth Based on General Purpose Technologies," CEPR Discussion Papers 1080, C.E.P.R. Discussion Papers.
    10. Xueming Luo & Siliang Tong & Zheng Fang & Zhe Qu, 2019. "Frontiers: Machines vs. Humans: The Impact of Artificial Intelligence Chatbot Disclosure on Customer Purchases," Marketing Science, INFORMS, vol. 38(6), pages 937-947, November.
    11. Chad Syverson, 2004. "Market Structure and Productivity: A Concrete Example," Journal of Political Economy, University of Chicago Press, vol. 112(6), pages 1181-1222, December.
    12. David Card & John E. DiNardo, 2002. "Skill-Biased Technological Change and Rising Wage Inequality: Some Problems and Puzzles," Journal of Labor Economics, University of Chicago Press, vol. 20(4), pages 733-783, October.
    13. Iain M. Cockburn & Rebecca Henderson & Scott Stern, 2018. "The Impact of Artificial Intelligence on Innovation," NBER Working Papers 24449, National Bureau of Economic Research, Inc.
    14. Marianne Bertrand & Esther Duflo & Sendhil Mullainathan, 2004. "How Much Should We Trust Differences-In-Differences Estimates?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 119(1), pages 249-275.
    15. Emma van Inwegen & Zanele Munyikwa & John J. Horton, 2023. "Algorithmic Writing Assistance on Jobseekers' Resumes Increases Hires," Papers 2301.08083, arXiv.org.
    16. Emma Wiles & Zanele T. Munyikwa & John J. Horton, 2023. "Algorithmic Writing Assistance on Jobseekers’ Resumes Increases Hires," NBER Working Papers 30886, National Bureau of Economic Research, Inc.
    17. Eric Overby & Sandra A. Slaughter & Benn Konsynski, 2010. "Research Commentary ---The Design, Use, and Consequences of Virtual Processes," Information Systems Research, INFORMS, vol. 21(4), pages 700-710, December.
    18. Tyna Eloundou & Sam Manning & Pamela Mishkin & Daniel Rock, 2023. "GPTs are GPTs: An Early Look at the Labor Market Impact Potential of Large Language Models," Papers 2303.10130, arXiv.org, revised Aug 2023.
    19. Daron Acemoglu & Pascual Restrepo, 2018. "Artificial Intelligence, Automation and Work," Boston University - Department of Economics - Working Papers Series dp-298, Boston University - Department of Economics.
    20. Ginger Zhe Jin, 2018. "Artificial Intelligence and Consumer Privacy," NBER Working Papers 24253, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Goller & Christian Gschwendt & Stefan C. Wolter, 2023. ""This time it's different" Generative Artificial Intelligence and Occupational Choice," Economics of Education Working Paper Series 0209, University of Zurich, Department of Business Administration (IBW).
    2. Cattaneo, Maria Alejandra & Gschwendt, Christian & Wolter, Stefan C., 2024. "How Scary Is the Risk of Automation? Evidence from a Large Scale Survey Experiment," IZA Discussion Papers 17097, Institute of Labor Economics (IZA).
    3. Maria A. Cattaneo & Christian Gschwendt & Stefan C. Wolter, 2024. "How Scary is the Risk of Automation? Evidence from a Large Survey Experiment," Economics of Education Working Paper Series 0213, University of Zurich, Department of Business Administration (IBW).
    4. Lijia Ma & Xingchen Xu & Yong Tan, 2024. "Crafting Knowledge: Exploring the Creative Mechanisms of Chat-Based Search Engines," Papers 2402.19421, arXiv.org.
    5. Mourelatos, Evangelos & Zervas, Panagiotis & Lagios, Dimitris & Tzimas, Giannis, 2024. "Can AI Bridge the Gender Gap in Competitiveness?," GLO Discussion Paper Series 1404, Global Labor Organization (GLO).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jay Dixon & Bryan Hong & Lynn Wu, 2021. "The Robot Revolution: Managerial and Employment Consequences for Firms," Management Science, INFORMS, vol. 67(9), pages 5586-5605, September.
    2. Egana-delSol, Pablo & Micco, Alejandro, 2024. "The Role of Technological Change in the Evolution of the Employment to Output Elasticity," IZA Discussion Papers 17003, Institute of Labor Economics (IZA).
    3. Colombo, Emilio & Mercorio, Fabio & Mezzanzanica, Mario, 2019. "AI meets labor market: Exploring the link between automation and skills," Information Economics and Policy, Elsevier, vol. 47(C), pages 27-37.
    4. Matthias Firgo & Peter Mayerhofer & Michael Peneder & Philipp Piribauer & Peter Reschenhofer, 2018. "Beschäftigungseffekte der Digitalisierung in den Bundesländern sowie in Stadt und Land," WIFO Studies, WIFO, number 61633, March.
    5. Barbieri, Laura & Mussida, Chiara & Piva, Mariacristina & Vivarelli, Marco, 2019. "Testing the employment and skill impact of new technologies: A survey and some methodological issues," MERIT Working Papers 2019-032, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    6. Wen Zhang & Kee-Hung Lai & Qiguo Gong, 2024. "The future of the labor force: higher cognition and more skills," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-9, December.
    7. Xueyuan Gao & Hua Feng, 2023. "AI-Driven Productivity Gains: Artificial Intelligence and Firm Productivity," Sustainability, MDPI, vol. 15(11), pages 1-21, June.
    8. Albanesi, Stefania & Dias da Silva, Antonio & Jimeno, Juan Francisco & Lamo, Ana & Wabitsch, Alena, 2023. "New Technologies and Jobs in Europe," CEPR Discussion Papers 18220, C.E.P.R. Discussion Papers.
    9. Qiu, Jiaping & Wan, Chi & Wang, Yan, 2024. "Labor-saving innovations and capital structure," Journal of Corporate Finance, Elsevier, vol. 84(C).
    10. Armanda Cetrulo & Dario Guarascio & Maria Enrica Virgillito, 2024. "Two neglected origins of inequality: hierarchical power and care work," LEM Papers Series 2024/04, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    11. Azar, José & Alekseeva, Liudmila & Gine, Mireia & Samila, Sampsa & Taska, Bledi, 2020. "The Demand for AI Skills in the Labor Market," CEPR Discussion Papers 14320, C.E.P.R. Discussion Papers.
    12. Huajie Jiang & Qiguo Gong, 2022. "Does Skill Polarization Affect Wage Polarization? U.S. Evidence 2009–2021," Sustainability, MDPI, vol. 14(21), pages 1-17, October.
    13. Dario Guarascio & Jelena Reljic & Roman Stollinger, 2023. "Artificial Intelligence and Employment: A Look into the Crystal Ball," LEM Papers Series 2023/34, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    14. Alonso, Cristian & Berg, Andrew & Kothari, Siddharth & Papageorgiou, Chris & Rehman, Sidra, 2022. "Will the AI revolution cause a great divergence?," Journal of Monetary Economics, Elsevier, vol. 127(C), pages 18-37.
    15. HAMAGUCHI Nobuaki & KONDO Keisuke, 2018. "Regional Employment and Artificial Intelligence in Japan," Discussion papers 18032, Research Institute of Economy, Trade and Industry (RIETI).
    16. Långstedt, Johnny & Spohr, Jonas & Hellström, Magnus, 2023. "Are our values becoming more fit for artificial intelligence society? A longitudinal study of occupational values and occupational susceptibility to technological substitution," Technology in Society, Elsevier, vol. 72(C).
    17. Zilian, Laura S. & Zilian, Stella S. & Jäger, Georg, 2021. "Labour market polarisation revisited: evidence from Austrian vacancy data," Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 55, pages 1-7.
    18. Cheng, Can & Luo, Jiayu & Zhu, Chun & Zhang, Shangfeng, 2024. "Artificial intelligence and the skill premium: A numerical analysis of theoretical models," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    19. Dominic Chalmers & Niall G. MacKenzie & Sara Carter, 2021. "Artificial Intelligence and Entrepreneurship: Implications for Venture Creation in the Fourth Industrial Revolution," Entrepreneurship Theory and Practice, , vol. 45(5), pages 1028-1053, September.
    20. Pablo Casas & Concepción Román, 2024. "The impact of artificial intelligence in the early retirement decision," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 51(3), pages 583-618, August.

    More about this item

    Keywords

    generative AI; large language model (LLM); online labor market;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ces:ceswps:_10601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klaus Wohlrabe (email available below). General contact details of provider: https://edirc.repec.org/data/cesifde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.