IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v199y2009i3p684-693.html
   My bibliography  Save this article

Portfolio optimization with an envelope-based multi-objective evolutionary algorithm

Author

Listed:
  • Branke, J.
  • Scheckenbach, B.
  • Stein, M.
  • Deb, K.
  • Schmeck, H.

Abstract

The problem of portfolio selection is a standard problem in financial engineering and has received a lot of attention in recent decades. Classical mean-variance portfolio selection aims at simultaneously maximizing the expected return of the portfolio and minimizing portfolio variance. In the case of linear constraints, the problem can be solved efficiently by parametric quadratic programming (i.e., variants of Markowitz' critical line algorithm). However, there are many real-world constraints that lead to a non-convex search space, e.g., cardinality constraints which limit the number of different assets in a portfolio, or minimum buy-in thresholds. As a consequence, the efficient approaches for the convex problem can no longer be applied, and new solutions are needed. In this paper, we propose to integrate an active set algorithm optimized for portfolio selection into a multi-objective evolutionary algorithm (MOEA). The idea is to let the MOEA come up with some convex subsets of the set of all feasible portfolios, solve a critical line algorithm for each subset, and then merge the partial solutions to form the solution of the original non-convex problem. We show that the resulting envelope-based MOEA significantly outperforms existing MOEAs.

Suggested Citation

  • Branke, J. & Scheckenbach, B. & Stein, M. & Deb, K. & Schmeck, H., 2009. "Portfolio optimization with an envelope-based multi-objective evolutionary algorithm," European Journal of Operational Research, Elsevier, vol. 199(3), pages 684-693, December.
  • Handle: RePEc:eee:ejores:v:199:y:2009:i:3:p:684-693
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00366-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ehrgott, Matthias & Klamroth, Kathrin & Schwehm, Christian, 2004. "An MCDM approach to portfolio optimization," European Journal of Operational Research, Elsevier, vol. 155(3), pages 752-770, June.
    2. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    3. Schaerf, Andrea, 2002. "Local Search Techniques for Constrained Portfolio Selection Problems," Computational Economics, Springer;Society for Computational Economics, vol. 20(3), pages 177-190, December.
    4. Crama, Y. & Schyns, M., 2003. "Simulated annealing for complex portfolio selection problems," European Journal of Operational Research, Elsevier, vol. 150(3), pages 546-571, November.
    5. N. J. Jobst & M. D. Horniman & C. A. Lucas & G. Mitra, 2001. "Computational aspects of alternative portfolio selection models in the presence of discrete asset choice constraints," Quantitative Finance, Taylor & Francis Journals, vol. 1(5), pages 489-501.
    6. Hirschberger, Markus & Qi, Yue & Steuer, Ralph E., 2007. "Randomly generating portfolio-selection covariance matrices with specified distributional characteristics," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1610-1625, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Woodside-Oriakhi, M. & Lucas, C. & Beasley, J.E., 2011. "Heuristic algorithms for the cardinality constrained efficient frontier," European Journal of Operational Research, Elsevier, vol. 213(3), pages 538-550, September.
    2. Steuer, Ralph E. & Qi, Yue & Wimmer, Maximilian, 2024. "Computing cardinality constrained portfolio selection efficient frontiers via closest correlation matrices," European Journal of Operational Research, Elsevier, vol. 313(2), pages 628-636.
    3. Huang, Xiaoxia, 2008. "Portfolio selection with a new definition of risk," European Journal of Operational Research, Elsevier, vol. 186(1), pages 351-357, April.
    4. Chen, Wei & Zhang, Wei-Guo, 2010. "The admissible portfolio selection problem with transaction costs and an improved PSO algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2070-2076.
    5. Francesco Cesarone & Andrea Scozzari & Fabio Tardella, 2015. "Linear vs. quadratic portfolio selection models with hard real-world constraints," Computational Management Science, Springer, vol. 12(3), pages 345-370, July.
    6. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    7. Yucheng Kao & Hsiu-Tzu Cheng, 2013. "Bacterial Foraging Optimization Approach to Portfolio Optimization," Computational Economics, Springer;Society for Computational Economics, vol. 42(4), pages 453-470, December.
    8. Francesco Cesarone & Andrea Scozzari & Fabio Tardella, 2013. "A new method for mean-variance portfolio optimization with cardinality constraints," Annals of Operations Research, Springer, vol. 205(1), pages 213-234, May.
    9. Hirschberger, Markus & Qi, Yue & Steuer, Ralph E., 2010. "Large-scale MV efficient frontier computation via a procedure of parametric quadratic programming," European Journal of Operational Research, Elsevier, vol. 204(3), pages 581-588, August.
    10. Konstantinos Anagnostopoulos & Georgios Mamanis, 2011. "Multiobjective evolutionary algorithms for complex portfolio optimization problems," Computational Management Science, Springer, vol. 8(3), pages 259-279, August.
    11. Ralph Steuer & Markus Hirschberger & Kalyanmoy Deb, 2016. "Extracting from the relaxed for large-scale semi-continuous variable nondominated frontiers," Journal of Global Optimization, Springer, vol. 64(1), pages 33-48, January.
    12. Gupta, Pankaj & Mittal, Garima & Mehlawat, Mukesh Kumar, 2013. "Expected value multiobjective portfolio rebalancing model with fuzzy parameters," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 190-203.
    13. Bo Zhang & Jin Peng & Shengguo Li, 2015. "Uncertain programming models for portfolio selection with uncertain returns," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(14), pages 2510-2519, October.
    14. Walter Briec & Kristiaan Kerstens & Octave Jokung, 2007. "Mean-Variance-Skewness Portfolio Performance Gauging: A General Shortage Function and Dual Approach," Management Science, INFORMS, vol. 53(1), pages 135-149, January.
    15. Zhang, Wei-Guo & Liu, Yong-Jun & Xu, Wei-Jun, 2012. "A possibilistic mean-semivariance-entropy model for multi-period portfolio selection with transaction costs," European Journal of Operational Research, Elsevier, vol. 222(2), pages 341-349.
    16. Emmanuel Jurczenko & Bertrand Maillet & Paul Merlin, 2008. "Efficient Frontier for Robust Higher-order Moment Portfolio Selection," Post-Print halshs-00336475, HAL.
    17. Steuer, Ralph E. & Utz, Sebastian, 2023. "Non-contour efficient fronts for identifying most preferred portfolios in sustainability investing," European Journal of Operational Research, Elsevier, vol. 306(2), pages 742-753.
    18. Derigs, Ulrich & Marzban, Shehab, 2009. "New strategies and a new paradigm for Shariah-compliant portfolio optimization," Journal of Banking & Finance, Elsevier, vol. 33(6), pages 1166-1176, June.
    19. Engau, Alexander, 2009. "Tradeoff-based decomposition and decision-making in multiobjective programming," European Journal of Operational Research, Elsevier, vol. 199(3), pages 883-891, December.
    20. Alexander Nikiporenko, 2023. "Time-limited Metaheuristics for Cardinality-constrained Portfolio Optimisation," Papers 2307.04045, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:199:y:2009:i:3:p:684-693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.