IDEAS home Printed from https://ideas.repec.org/a/taf/applec/v47y2015i48p5147-5158.html
   My bibliography  Save this article

Full versus quasi MLE for ARMA-GARCH models with infinitely divisible innovations

Author

Listed:
  • Jimmie Goode
  • Kim
  • Fabozzi

Abstract

We compare the backtesting performance of ARMA-GARCH models with the most common types of infinitely divisible innovations, fit with both full maximum likelihood estimation (MLE) and quasi maximum likelihood estimation (QMLE). The innovation types considered are the Gaussian, Student's t , α -stable, classical tempered stable (CTS), normal tempered stable (NTS) and generalized hyperbolic (GH) distributions. In calm periods of decreasing volatility, MLE and QMLE produce near identical performance in forecasting value-at-risk (VaR) and conditional value-at-risk (CVaR). In more volatile periods, QMLE can actually produce superior performance for CTS, NTS and α -stable innovations. While the t -ARMA-GARCH model has the fewest number of VaR violations, rejections by the Kupeic and Berkowitz tests suggest excessively large forecasted losses. The α -stable, CTS and NTS innovations compare favourably, with the latter two also allowing for option pricing under a single market model.

Suggested Citation

  • Jimmie Goode & Kim & Fabozzi, 2015. "Full versus quasi MLE for ARMA-GARCH models with infinitely divisible innovations," Applied Economics, Taylor & Francis Journals, vol. 47(48), pages 5147-5158, October.
  • Handle: RePEc:taf:applec:v:47:y:2015:i:48:p:5147-5158
    DOI: 10.1080/00036846.2015.1042203
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00036846.2015.1042203
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00036846.2015.1042203?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michele Leonardo Bianchi, 2014. "Are the log-returns of Italian open-end mutual funds normally distributed? A risk assessment perspective," Temi di discussione (Economic working papers) 957, Bank of Italy, Economic Research and International Relations Area.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michele Leonardo Bianchi & Giovanni De Luca & Giorgia Rivieccio, 2020. "CoVaR with volatility clustering, heavy tails and non-linear dependence," Papers 2009.10764, arXiv.org.
    2. Gong, Xiao-Li & Xiong, Xiong, 2021. "Multi-objective portfolio optimization under tempered stable Lévy distribution with Copula dependence," Finance Research Letters, Elsevier, vol. 38(C).
    3. Gong, Xiaoli & Zhuang, Xintian, 2017. "Measuring financial risk and portfolio reversion with time changed tempered stable Lévy processes," The North American Journal of Economics and Finance, Elsevier, vol. 40(C), pages 148-159.
    4. Hasan A. Fallahgoul & David Veredas & Frank J. Fabozzi, 2019. "Quantile-Based Inference for Tempered Stable Distributions," Computational Economics, Springer;Society for Computational Economics, vol. 53(1), pages 51-83, January.
    5. Tiantian Li & Young Shin Kim & Qi Fan & Fumin Zhu, 2021. "Aumann–Serrano index of risk in portfolio optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(2), pages 197-217, October.
    6. Bianchi, Michele Leonardo & De Luca, Giovanni & Rivieccio, Giorgia, 2023. "Non-Gaussian models for CoVaR estimation," International Journal of Forecasting, Elsevier, vol. 39(1), pages 391-404.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choi, Jaehyung & Kim, Young Shin & Mitov, Ivan, 2015. "Reward-risk momentum strategies using classical tempered stable distribution," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 194-213.
    2. Chou-Wen Wang & Sharon S. Yang & Jr-Wei Huang, 2017. "Analytic option pricing and risk measures under a regime-switching generalized hyperbolic model with an application to equity-linked insurance," Quantitative Finance, Taylor & Francis Journals, vol. 17(10), pages 1567-1581, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:applec:v:47:y:2015:i:48:p:5147-5158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEC20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.