IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v332y2024i1d10.1007_s10479-022-04717-0.html
   My bibliography  Save this article

Portfolio credit risk with Archimedean copulas: asymptotic analysis and efficient simulation

Author

Listed:
  • Hengxin Cui

    (Manulife Financial Corporation)

  • Ken Seng Tan

    (Nanyang Technological University)

  • Fan Yang

    (University of Waterloo)

Abstract

In this paper, we study large losses arising from defaults of a credit portfolio. We assume that the portfolio dependence structure is modelled by the Archimedean copula family as opposed to the widely used Gaussian copula. The resulting model is new, and it has the capability of capturing extremal dependence among obligors. We first derive sharp asymptotics for the tail probability of portfolio losses and the expected shortfall. Then we demonstrate how to utilize these asymptotic results to produce two variance reduction algorithms that significantly enhance the classical Monte Carlo methods. Moreover, we show that the estimator based on the proposed two-step importance sampling method is logarithmically efficient while the estimator based on the conditional Monte Carlo method has bounded relative error as the number of obligors tends to infinity. Extensive simulation studies are conducted to highlight the efficiency of our proposed algorithms for estimating portfolio credit risk. In particular, the variance reduction achieved by the proposed conditional Monte Carlo method, relative to the crude Monte Carlo method, is in the order of millions.

Suggested Citation

  • Hengxin Cui & Ken Seng Tan & Fan Yang, 2024. "Portfolio credit risk with Archimedean copulas: asymptotic analysis and efficient simulation," Annals of Operations Research, Springer, vol. 332(1), pages 55-84, January.
  • Handle: RePEc:spr:annopr:v:332:y:2024:i:1:d:10.1007_s10479-022-04717-0
    DOI: 10.1007/s10479-022-04717-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04717-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04717-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:332:y:2024:i:1:d:10.1007_s10479-022-04717-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.