IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v97y2006i7p1551-1572.html
   My bibliography  Save this article

Characterization of dependence of multidimensional Lévy processes using Lévy copulas

Author

Listed:
  • Kallsen, Jan
  • Tankov, Peter

Abstract

This paper suggests Lévy copulas in order to characterize the dependence among components of multidimensional Lévy processes. This concept parallels the notion of a copula on the level of Lévy measures. As for random vectors, a version of Sklar's theorem states that the law of a general multivariate Lévy process is obtained by combining arbitrary univariate Lévy processes with an arbitrary Lévy copula. We construct parametric families of Lévy copulas and prove a limit theorem, which indicates how to obtain the Lévy copula of a multivariate Lévy process X from the ordinary copula of the random vector Xt for small t.

Suggested Citation

  • Kallsen, Jan & Tankov, Peter, 2006. "Characterization of dependence of multidimensional Lévy processes using Lévy copulas," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1551-1572, August.
  • Handle: RePEc:eee:jmvana:v:97:y:2006:i:7:p:1551-1572
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(05)00202-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    3. Sato, Ken-iti, 2001. "Subordination and self-decomposability," Statistics & Probability Letters, Elsevier, vol. 54(3), pages 317-324, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buchmann, Boris & Kaehler, Benjamin & Maller, Ross & Szimayer, Alexander, 2017. "Multivariate subordination using generalised Gamma convolutions with applications to Variance Gamma processes and option pricing," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2208-2242.
    2. Yongxin Yang & Yu Zheng & Timothy M. Hospedales, 2016. "Gated Neural Networks for Option Pricing: Rationality by Design," Papers 1609.07472, arXiv.org, revised Mar 2020.
    3. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    4. Kirkby, J. Lars & Nguyen, Duy, 2021. "Equity-linked Guaranteed Minimum Death Benefits with dollar cost averaging," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 408-428.
    5. Jimin Lin & Guixin Liu, 2024. "Neural Term Structure of Additive Process for Option Pricing," Papers 2408.01642, arXiv.org, revised Oct 2024.
    6. Ron Chan & Simon Hubbert, 2014. "Options pricing under the one-dimensional jump-diffusion model using the radial basis function interpolation scheme," Review of Derivatives Research, Springer, vol. 17(2), pages 161-189, July.
    7. Buckley, Winston & Long, Hongwei & Marshall, Mario, 2016. "Numerical approximations of optimal portfolios in mispriced asymmetric Lévy markets," European Journal of Operational Research, Elsevier, vol. 252(2), pages 676-686.
    8. Pérez-Abreu, Victor & Stelzer, Robert, 2014. "Infinitely divisible multivariate and matrix Gamma distributions," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 155-175.
    9. Jose Cruz & Maria Grossinho & Daniel Sevcovic & Cyril Izuchukwu Udeani, 2022. "Linear and Nonlinear Partial Integro-Differential Equations arising from Finance," Papers 2207.11568, arXiv.org.
    10. Lemmens, D. & Liang, L.Z.J. & Tempere, J. & De Schepper, A., 2010. "Pricing bounds for discrete arithmetic Asian options under Lévy models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(22), pages 5193-5207.
    11. Ascione, Giacomo & Mehrdoust, Farshid & Orlando, Giuseppe & Samimi, Oldouz, 2023. "Foreign Exchange Options on Heston-CIR Model Under Lévy Process Framework," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    12. Sharif Mozumder & Arafatur Rahman, 2016. "Market Risk Of Investment In Us Subprime Crisis: Comparison Of A Pure Diffusion And A Pure Jump Model," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 11(03), pages 1-17, September.
    13. Johannes Ruf & Weiguan Wang, 2019. "Neural networks for option pricing and hedging: a literature review," Papers 1911.05620, arXiv.org, revised May 2020.
    14. Cristian Homescu, 2011. "Implied Volatility Surface: Construction Methodologies and Characteristics," Papers 1107.1834, arXiv.org.
    15. João Guerra & Manuel Guerra & Zachary Polaski, 2019. "Market Timing with Option-Implied Distributions in an Exponentially Tempered Stable Lévy Market," Working Papers REM 2019/74, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    16. Yang, Seungho & Oh, Gabjin, 2020. "A Bayesian estimation of exponential Lévy models for implied volatility smile," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    17. Colino, Jesús P., 2008. "New stochastic processes to model interest rates : LIBOR additive processes," DES - Working Papers. Statistics and Econometrics. WS ws085316, Universidad Carlos III de Madrid. Departamento de Estadística.
    18. Slim, Skander, 2016. "On the source of stochastic volatility: Evidence from CAC40 index options during the subprime crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 63-76.
    19. Zhang, Gongqiu & Li, Lingfei, 2023. "A general method for analysis and valuation of drawdown risk," Journal of Economic Dynamics and Control, Elsevier, vol. 152(C).
    20. Gong, Xiaoli & Zhuang, Xintian, 2017. "American option valuation under time changed tempered stable Lévy processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 57-68.

    More about this item

    Keywords

    Lévy process Copula Limit theorems;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:97:y:2006:i:7:p:1551-1572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.