IDEAS home Printed from https://ideas.repec.org/a/eee/finana/v90y2023ics105752192300368x.html
   My bibliography  Save this article

Nonparametric inference of expectile-based value-at-risk for financial time series with application to risk assessment

Author

Listed:
  • Zhang, Feipeng
  • Xu, Yixiong
  • Fan, Caiyun

Abstract

Expectile-based value-at-risk (EVaR) is a more sensitive measure of the magnitude of extreme losses compared to the conventional quantile-based value-at-risk (VaR). Besides, EVaR is shown to be the only law-invariant, coherent, elicitable risk measure. For these reasons and other advantages, comparing with the existing risk measures (e.g., VaR and ES), EVaR has been recently recommended to use in financial risk management. This article considers nonparametric estimation of EVaR and associated statistical inference for dependent financial time series. The asymptotic properties (strong consistency and weak convergence) of the proposed estimator are investigated in the context of dependence. Monte Carlo simulation studies show that the proposed estimator has desirable finite sample performance. An empirical application to evaluate EVaR of S&P500 returns provides valuable insights for risk assessment in out-of-sample prediction.

Suggested Citation

  • Zhang, Feipeng & Xu, Yixiong & Fan, Caiyun, 2023. "Nonparametric inference of expectile-based value-at-risk for financial time series with application to risk assessment," International Review of Financial Analysis, Elsevier, vol. 90(C).
  • Handle: RePEc:eee:finana:v:90:y:2023:i:c:s105752192300368x
    DOI: 10.1016/j.irfa.2023.102852
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S105752192300368X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.irfa.2023.102852?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kuan, Chung-Ming & Yeh, Jin-Huei & Hsu, Yu-Chin, 2009. "Assessing value at risk with CARE, the Conditional Autoregressive Expectile models," Journal of Econometrics, Elsevier, vol. 150(2), pages 261-270, June.
    2. Fan, Yanqin & Liu, Ruixuan, 2016. "A direct approach to inference in nonparametric and semiparametric quantile models," Journal of Econometrics, Elsevier, vol. 191(1), pages 196-216.
    3. Fabio Busetti & Michele Caivano & Davide Delle Monache, 2021. "Domestic and Global Determinants of Inflation: Evidence from Expectile Regression," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(4), pages 982-1001, August.
    4. Johanna F. Ziegel, 2016. "Coherence And Elicitability," Mathematical Finance, Wiley Blackwell, vol. 26(4), pages 901-918, October.
    5. De Rossi, Giuliano & Harvey, Andrew, 2009. "Quantiles, expectiles and splines," Journal of Econometrics, Elsevier, vol. 152(2), pages 179-185, October.
    6. Kim, Minjo & Lee, Sangyeol, 2016. "Nonlinear expectile regression with application to Value-at-Risk and expected shortfall estimation," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 1-19.
    7. Amemiya, Takeshi, 1973. "Regression Analysis when the Dependent Variable is Truncated Normal," Econometrica, Econometric Society, vol. 41(6), pages 997-1016, November.
    8. Song Xi Chen, 2005. "Nonparametric Inference of Value-at-Risk for Dependent Financial Returns," Journal of Financial Econometrics, Oxford University Press, vol. 3(2), pages 227-255.
    9. Fabio Bellini & Valeria Bignozzi, 2015. "On elicitable risk measures," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 725-733, May.
    10. Rong Jiang & Xueping Hu & Keming Yu, 2022. "Single-Index Expectile Models for Estimating Conditional Value at Risk and Expected Shortfall [Coherent Measures of Risk]," Journal of Financial Econometrics, Oxford University Press, vol. 20(2), pages 345-366.
    11. Fang, Zheng & Li, Qi & Yan, Karen X., 2023. "A Simple Nonparametric Approach For Estimation And Inference Of Conditional Quantile Functions," Econometric Theory, Cambridge University Press, vol. 39(2), pages 290-320, April.
    12. Fabio Bellini & Bernhard Klar & Alfred Müller, 2018. "Expectiles, Omega Ratios and Stochastic Ordering," Methodology and Computing in Applied Probability, Springer, vol. 20(3), pages 855-873, September.
    13. Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504, January.
    14. Yao, Qiwei & Tong, Howell, 1996. "Asymmetric least squares regression estimation: a nonparametric approach," LSE Research Online Documents on Economics 19423, London School of Economics and Political Science, LSE Library.
    15. Bellini, Fabio & Klar, Bernhard & Müller, Alfred & Rosazza Gianin, Emanuela, 2014. "Generalized quantiles as risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 41-48.
    16. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    17. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    18. Kato, Kengo, 2009. "Asymptotics for argmin processes: Convexity arguments," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1816-1829, September.
    19. Zaevski, Tsvetelin S. & Nedeltchev, Dragomir C., 2023. "From BASEL III to BASEL IV and beyond: Expected shortfall and expectile risk measures," International Review of Financial Analysis, Elsevier, vol. 87(C).
    20. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    21. Anthony C. Davison & Simone A. Padoan & Gilles Stupfler, 2023. "Tail Risk Inference via Expectiles in Heavy-Tailed Time Series," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(3), pages 876-889, July.
    22. Newey, Whitney K & Powell, James L, 1987. "Asymmetric Least Squares Estimation and Testing," Econometrica, Econometric Society, vol. 55(4), pages 819-847, July.
    23. James W. Taylor, 2008. "Estimating Value at Risk and Expected Shortfall Using Expectiles," Journal of Financial Econometrics, Oxford University Press, vol. 6(2), pages 231-252, Spring.
    24. Carrasco, Marine & Chen, Xiaohong, 2002. "Mixing And Moment Properties Of Various Garch And Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 18(1), pages 17-39, February.
    25. Shangyu Xie & Yong Zhou & Alan T. K. Wan, 2014. "A Varying-Coefficient Expectile Model for Estimating Value at Risk," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(4), pages 576-592, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
    2. Man, Rebeka & Tan, Kean Ming & Wang, Zian & Zhou, Wen-Xin, 2024. "Retire: Robust expectile regression in high dimensions," Journal of Econometrics, Elsevier, vol. 239(2).
    3. Mohammedi, Mustapha & Bouzebda, Salim & Laksaci, Ali, 2021. "The consistency and asymptotic normality of the kernel type expectile regression estimator for functional data," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    4. Zongwu Cai & Ying Fang & Dingshi Tian, 2018. "Assessing Tail Risk Using Expectile Regressions with Partially Varying Coefficients," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201804, University of Kansas, Department of Economics, revised Oct 2018.
    5. Zhang, Feipeng & Li, Qunhua, 2017. "A continuous threshold expectile model," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 49-66.
    6. Bingzhen Geng & Yang Liu & Yimiao Zhao, 2024. "Value-at-Risk- and Expectile-based Systemic Risk Measures and Second-order Asymptotics: With Applications to Diversification," Papers 2404.18029, arXiv.org.
    7. Hamidi, Benjamin & Maillet, Bertrand & Prigent, Jean-Luc, 2014. "A dynamic autoregressive expectile for time-invariant portfolio protection strategies," Journal of Economic Dynamics and Control, Elsevier, vol. 46(C), pages 1-29.
    8. Daouia, Abdelaati & Padoan, Simone A. & Stupfler, Gilles, 2024. "Extreme expectile estimation for short-tailed data," Journal of Econometrics, Elsevier, vol. 241(2).
    9. Busetti, Fabio & Caivano, Michele & Delle Monache, Davide & Pacella, Claudia, 2021. "The time-varying risk of Italian GDP," Economic Modelling, Elsevier, vol. 101(C).
    10. Edgars Jakobsons & Steven Vanduffel, 2015. "Dependence Uncertainty Bounds for the Expectile of a Portfolio," Risks, MDPI, vol. 3(4), pages 1-25, December.
    11. Tadese, Mekonnen & Drapeau, Samuel, 2020. "Relative bound and asymptotic comparison of expectile with respect to expected shortfall," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 387-399.
    12. Xu, Xiu & Mihoci, Andrija & Härdle, Wolfgang Karl, 2018. "lCARE - localizing conditional autoregressive expectiles," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 198-220.
    13. Gao, Suhao & Yu, Zhen, 2023. "Parametric expectile regression and its application for premium calculation," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 242-256.
    14. Daouia, Abdelaati & Girard, Stéphane & Stupfler, Gilles, 2021. "ExpectHill estimation, extreme risk and heavy tails," Journal of Econometrics, Elsevier, vol. 221(1), pages 97-117.
    15. C. Adam & I. Gijbels, 2022. "Local polynomial expectile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 341-378, April.
    16. Girard, Stéphane & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2022. "Functional estimation of extreme conditional expectiles," Econometrics and Statistics, Elsevier, vol. 21(C), pages 131-158.
    17. Marcelo Brutti Righi & Fernanda Maria Muller & Marlon Ruoso Moresco, 2022. "A risk measurement approach from risk-averse stochastic optimization of score functions," Papers 2208.14809, arXiv.org, revised May 2023.
    18. Garcia-Jorcano, Laura & Sanchis-Marco, Lidia, 2022. "Spillover effects between commodity and stock markets: A SDSES approach," Resources Policy, Elsevier, vol. 79(C).
    19. Samuel Drapeau & Mekonnen Tadese, 2019. "Relative Bound and Asymptotic Comparison of Expectile with Respect to Expected Shortfall," Papers 1906.09729, arXiv.org, revised Jun 2020.
    20. Jakobsons Edgars, 2016. "Scenario aggregation method for portfolio expectile optimization," Statistics & Risk Modeling, De Gruyter, vol. 33(1-2), pages 51-65, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:90:y:2023:i:c:s105752192300368x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620166 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.