IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v94y2016icp1-19.html
   My bibliography  Save this article

Nonlinear expectile regression with application to Value-at-Risk and expected shortfall estimation

Author

Listed:
  • Kim, Minjo
  • Lee, Sangyeol

Abstract

This paper considers nonlinear expectile regression models to estimate conditional expected shortfall (ES) and Value-at-Risk (VaR). In the literature, the asymmetric least squares (ALS) regression method has been widely used to estimate expectile regression models. However, no literatures rigorously investigated the asymptotic properties of the ALS estimates in nonlinear models with heteroscedasticity. Motivated by this aspect, this paper studies the consistency and asymptotic normality of the ALS estimates and conditional VaR and ES in those models. To illustrate, a simulation study and real data analysis are conducted.

Suggested Citation

  • Kim, Minjo & Lee, Sangyeol, 2016. "Nonlinear expectile regression with application to Value-at-Risk and expected shortfall estimation," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 1-19.
  • Handle: RePEc:eee:csdana:v:94:y:2016:i:c:p:1-19
    DOI: 10.1016/j.csda.2015.07.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947315001681
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2015.07.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mika Meitz & Pentti Saikkonen, 2008. "Stability of nonlinear AR‐GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(3), pages 453-475, May.
    2. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    3. White,Halbert, 1996. "Estimation, Inference and Specification Analysis," Cambridge Books, Cambridge University Press, number 9780521574464.
    4. Amemiya, Takeshi, 1973. "Regression Analysis when the Dependent Variable is Truncated Normal," Econometrica, Econometric Society, vol. 41(6), pages 997-1016, November.
    5. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    6. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    7. K. Newey, Whitney, 1985. "Generalized method of moments specification testing," Journal of Econometrics, Elsevier, vol. 29(3), pages 229-256, September.
    8. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    9. Cathy W.S. Chen & Richard Gerlach & Edward M. H. Lin & W. C. W. Lee, 2012. "Bayesian Forecasting for Financial Risk Management, Pre and Post the Global Financial Crisis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 31(8), pages 661-687, December.
    10. Chen, Cathy W.S. & Gerlach, Richard & Hwang, Bruce B.K. & McAleer, Michael, 2012. "Forecasting Value-at-Risk using nonlinear regression quantiles and the intra-day range," International Journal of Forecasting, Elsevier, vol. 28(3), pages 557-574.
    11. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    12. Pollard, David, 1985. "New Ways to Prove Central Limit Theorems," Econometric Theory, Cambridge University Press, vol. 1(3), pages 295-313, December.
    13. Sangyeol Lee & Jungsik Noh, 2013. "Quantile Regression Estimator for GARCH Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(1), pages 2-20, March.
    14. Weiss, Andrew A., 1991. "Estimating Nonlinear Dynamic Models Using Least Absolute Error Estimation," Econometric Theory, Cambridge University Press, vol. 7(1), pages 46-68, March.
    15. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    16. Aigner, D J & Amemiya, Takeshi & Poirier, Dale J, 1976. "On the Estimation of Production Frontiers: Maximum Likelihood Estimation of the Parameters of a Discontinuous Density Function," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 17(2), pages 377-396, June.
    17. Newey, Whitney K & Powell, James L, 1987. "Asymmetric Least Squares Estimation and Testing," Econometrica, Econometric Society, vol. 55(4), pages 819-847, July.
    18. James W. Taylor, 2008. "Estimating Value at Risk and Expected Shortfall Using Expectiles," Journal of Financial Econometrics, Oxford University Press, vol. 6(2), pages 231-252, Spring.
    19. Yamai, Yasuhiro & Yoshiba, Toshinao, 2002. "On the Validity of Value-at-Risk: Comparative Analyses with Expected Shortfall," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 20(1), pages 57-85, January.
    20. Carrasco, Marine & Chen, Xiaohong, 2002. "Mixing And Moment Properties Of Various Garch And Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 18(1), pages 17-39, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taylor, James W., 2022. "Forecasting Value at Risk and expected shortfall using a model with a dynamic omega ratio," Journal of Banking & Finance, Elsevier, vol. 140(C).
    2. Zhang, Feipeng & Li, Qunhua, 2017. "A continuous threshold expectile model," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 49-66.
    3. Bonaccolto, Giovanni & Caporin, Massimiliano & Maillet, Bertrand B., 2022. "Dynamic large financial networks via conditional expected shortfalls," European Journal of Operational Research, Elsevier, vol. 298(1), pages 322-336.
    4. Zhang, Feipeng & Xu, Yixiong & Fan, Caiyun, 2023. "Nonparametric inference of expectile-based value-at-risk for financial time series with application to risk assessment," International Review of Financial Analysis, Elsevier, vol. 90(C).
    5. Marius Lux & Wolfgang Karl Hardle & Stefan Lessmann, 2020. "Data driven value-at-risk forecasting using a SVR-GARCH-KDE hybrid," Papers 2009.06910, arXiv.org.
    6. Beatrice Foroni & Luca Merlo & Lea Petrella, 2023. "Expectile hidden Markov regression models for analyzing cryptocurrency returns," Papers 2301.09722, arXiv.org, revised Jan 2024.
    7. Marius Lux & Wolfgang Karl Härdle & Stefan Lessmann, 2020. "Data driven value-at-risk forecasting using a SVR-GARCH-KDE hybrid," Computational Statistics, Springer, vol. 35(3), pages 947-981, September.
    8. Zhang, Heng-Guo & Su, Chi-Wei & Song, Yan & Qiu, Shuqi & Xiao, Ran & Su, Fei, 2017. "Calculating Value-at-Risk for high-dimensional time series using a nonlinear random mapping model," Economic Modelling, Elsevier, vol. 67(C), pages 355-367.
    9. Gao, Suhao & Yu, Zhen, 2023. "Parametric expectile regression and its application for premium calculation," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 242-256.
    10. Jun Zhao & Guan’ao Yan & Yi Zhang, 2022. "Robust estimation and shrinkage in ultrahigh dimensional expectile regression with heavy tails and variance heterogeneity," Statistical Papers, Springer, vol. 63(1), pages 1-28, February.
    11. Xu, Qifa & Chen, Lu & Jiang, Cuixia & Yu, Keming, 2020. "Mixed data sampling expectile regression with applications to measuring financial risk," Economic Modelling, Elsevier, vol. 91(C), pages 469-486.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patton, Andrew J. & Ziegel, Johanna F. & Chen, Rui, 2019. "Dynamic semiparametric models for expected shortfall (and Value-at-Risk)," Journal of Econometrics, Elsevier, vol. 211(2), pages 388-413.
    2. Chao Wang & Richard Gerlach, 2019. "Semi-parametric Realized Nonlinear Conditional Autoregressive Expectile and Expected Shortfall," Papers 1906.09961, arXiv.org.
    3. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    4. Antonio Rubia Serrano & Lidia Sanchis-Marco, 2015. "Measuring Tail-Risk Cross-Country Exposures in the Banking Industry," Working Papers. Serie AD 2015-01, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    5. Gerlach, Richard & Wang, Chao, 2020. "Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 489-506.
    6. David Happersberger & Harald Lohre & Ingmar Nolte, 2020. "Estimating portfolio risk for tail risk protection strategies," European Financial Management, European Financial Management Association, vol. 26(4), pages 1107-1146, September.
    7. Richard Gerlach & Chao Wang, 2016. "Bayesian Semi-parametric Realized-CARE Models for Tail Risk Forecasting Incorporating Realized Measures," Papers 1612.08488, arXiv.org.
    8. Vica Tendenan & Richard Gerlach & Chao Wang, 2020. "Tail risk forecasting using Bayesian realized EGARCH models," Papers 2008.05147, arXiv.org, revised Aug 2020.
    9. Giuseppe Storti & Chao Wang, 2021. "Modelling uncertainty in financial tail risk: a forecast combination and weighted quantile approach," Papers 2104.04918, arXiv.org, revised Jul 2021.
    10. Storti, Giuseppe & Wang, Chao, 2022. "Nonparametric expected shortfall forecasting incorporating weighted quantiles," International Journal of Forecasting, Elsevier, vol. 38(1), pages 224-239.
    11. Enrique Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2021. "Backtesting expected shortfall for world stock index ETFs with extreme value theory and Gram–Charlier mixtures," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4163-4189, July.
    12. Vincenzo Candila & Giampiero M. Gallo & Lea Petrella, 2020. "Mixed--frequency quantile regressions to forecast Value--at--Risk and Expected Shortfall," Papers 2011.00552, arXiv.org, revised Mar 2023.
    13. Garcia-Jorcano, Laura & Sanchis-Marco, Lidia, 2024. "Forecasting the effect of extreme sea-level rise on financial market risk," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 1-27.
    14. Taylor, James W., 2020. "Forecast combinations for value at risk and expected shortfall," International Journal of Forecasting, Elsevier, vol. 36(2), pages 428-441.
    15. Merlo, Luca & Petrella, Lea & Raponi, Valentina, 2021. "Forecasting VaR and ES using a joint quantile regression and its implications in portfolio allocation," Journal of Banking & Finance, Elsevier, vol. 133(C).
    16. Marius Galabe Sampid & Haslifah M Hasim & Hongsheng Dai, 2018. "Refining value-at-risk estimates using a Bayesian Markov-switching GJR-GARCH copula-EVT model," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-33, June.
    17. Nieto, María Rosa, 2008. "Measuring financial risk : comparison of alternative procedures to estimate VaR and ES," DES - Working Papers. Statistics and Econometrics. WS ws087326, Universidad Carlos III de Madrid. Departamento de Estadística.
    18. Xu, Qifa & Chen, Lu & Jiang, Cuixia & Yu, Keming, 2020. "Mixed data sampling expectile regression with applications to measuring financial risk," Economic Modelling, Elsevier, vol. 91(C), pages 469-486.
    19. Taylor, James W., 2021. "Evaluating quantile-bounded and expectile-bounded interval forecasts," International Journal of Forecasting, Elsevier, vol. 37(2), pages 800-811.
    20. Marco Bottone & Lea Petrella & Mauro Bernardi, 2021. "Unified Bayesian conditional autoregressive risk measures using the skew exponential power distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 1079-1107, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:94:y:2016:i:c:p:1-19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.