IDEAS home Printed from https://ideas.repec.org/a/oup/jfinec/v20y2022i2p345-366..html
   My bibliography  Save this article

Single-Index Expectile Models for Estimating Conditional Value at Risk and Expected Shortfall
[Coherent Measures of Risk]

Author

Listed:
  • Rong Jiang
  • Xueping Hu
  • Keming Yu

Abstract

This article develops a single-index approach for modeling the expectile-based value at risk (EVaR). EVaR has an advantage over the conventional quantile-based VaR (QVaR) of being more sensitive to the magnitude of extreme losses. EVaR can also be used for calculating QVaR and expected shortfall (ES) by exploiting the one-to-one mapping from expectiles to quantiles and the relationship between VaR and ES. We develop an asymmetric least squares technique for estimating the unknown regression parameter and link function in a single-index model, and establish the asymptotic normality of the resultant estimators. Simulation studies and real data applications are conducted to illustrate the finite sample performance of the proposed methods.

Suggested Citation

  • Rong Jiang & Xueping Hu & Keming Yu, 2022. "Single-Index Expectile Models for Estimating Conditional Value at Risk and Expected Shortfall [Coherent Measures of Risk]," Journal of Financial Econometrics, Oxford University Press, vol. 20(2), pages 345-366.
  • Handle: RePEc:oup:jfinec:v:20:y:2022:i:2:p:345-366.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/jjfinec/nbaa016
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taylor, James W., 2022. "Forecasting Value at Risk and expected shortfall using a model with a dynamic omega ratio," Journal of Banking & Finance, Elsevier, vol. 140(C).
    2. Zhang, Feipeng & Xu, Yixiong & Fan, Caiyun, 2023. "Nonparametric inference of expectile-based value-at-risk for financial time series with application to risk assessment," International Review of Financial Analysis, Elsevier, vol. 90(C).
    3. Larbi Ait-Hennani & Zoulikha Kaid & Ali Laksaci & Mustapha Rachdi, 2022. "Nonparametric Estimation of the Expected Shortfall Regression for Quasi-Associated Functional Data," Mathematics, MDPI, vol. 10(23), pages 1-23, November.
    4. Yan Fang & Jian Li & Yinglin Liu & Yunfan Zhao, 2023. "Semiparametric estimation of expected shortfall and its application in finance," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 835-851, July.

    More about this item

    Keywords

    single-index model; expectile regression; value at risk;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:jfinec:v:20:y:2022:i:2:p:345-366.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/sofieea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.