IDEAS home Printed from https://ideas.repec.org/a/eee/finana/v94y2024ics1057521924001947.html
   My bibliography  Save this article

Do commodity futures have a steering effect on the spot stock market in China? New evidence from volatility forecasting

Author

Listed:
  • Lu, Fei
  • Ma, Feng
  • Bouri, Elie
  • Liao, Yin

Abstract

This study conducts a volatility forecasting analysis to examine whether Chinese commodity futures have a steering effect on China's spot stock market index. After constructing realized volatility indices for 36 commodity futures, a combination of forecasts and shrinkage methods are applied. The results reveal that the commodity futures volatility index has the power to predict the realized volatility of the stock market index. The PVC (Poly Vinyl Chloride) index, in particular, is a powerful predictor, which reflects its ability to serve as a guide for short-term market risk management and stock market investing decisions. The shrinkage model fully incorporates volatility information and consistently outperforms, even during the COVID-19 pandemic. We consider the impact of Chinese economic policy and investor sentiment and find that commodity futures maintain their outstanding predictive power. We also explore the difference in forecasting spot volatility by futures volume and show that predictive power depends not only on trading volume but also on commodity type. Further analysis highlights the predictive performance of commodity futures in semi-variance and stock sub-sectors, providing significant findings. Our study is statistically and economically significant and sheds light on stock market volatility forecasting and investment decisions in the largest emerging market.

Suggested Citation

  • Lu, Fei & Ma, Feng & Bouri, Elie & Liao, Yin, 2024. "Do commodity futures have a steering effect on the spot stock market in China? New evidence from volatility forecasting," International Review of Financial Analysis, Elsevier, vol. 94(C).
  • Handle: RePEc:eee:finana:v:94:y:2024:i:c:s1057521924001947
    DOI: 10.1016/j.irfa.2024.103262
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1057521924001947
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.irfa.2024.103262?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erik Theissen, 2012. "Price discovery in spot and futures markets: a reconsideration," The European Journal of Finance, Taylor & Francis Journals, vol. 18(10), pages 969-987, November.
    2. Shiqing Xie & Taiping Mo, 2014. "Index Futures Trading and Stock Market Volatility in China: A Difference‐in‐Difference Approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(3), pages 282-297, March.
    3. Jeremy Berkowitz & James O'Brien, 2002. "How Accurate Are Value‐at‐Risk Models at Commercial Banks?," Journal of Finance, American Finance Association, vol. 57(3), pages 1093-1111, June.
    4. Avik Sinha & Arshian Sharif & Arnab Adhikari & Ankit Sharma, 2022. "Dependence structure between Indian financial market and energy commodities: a cross-quantilogram based evidence," Annals of Operations Research, Springer, vol. 313(1), pages 257-287, June.
    5. Sung C. Bae & Taek Ho Kwon & Jong Won Park, 2004. "Futures trading, spot market volatility, and market efficiency: The case of the Korean index futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 24(12), pages 1195-1228, December.
    6. Andrew J. Patton & Kevin Sheppard, 2015. "Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility," The Review of Economics and Statistics, MIT Press, vol. 97(3), pages 683-697, July.
    7. Lubos Pástor & Pietro Veronesi, 2012. "Uncertainty about Government Policy and Stock Prices," Journal of Finance, American Finance Association, vol. 67(4), pages 1219-1264, August.
    8. Barunik, Jozef & Krehlik, Tomas & Vacha, Lukas, 2016. "Modeling and forecasting exchange rate volatility in time-frequency domain," European Journal of Operational Research, Elsevier, vol. 251(1), pages 329-340.
    9. repec:dau:papers:123456789/14980 is not listed on IDEAS
    10. Haiqiang Chen & Qian Han & Yingxing Li & Kai Wu, 2013. "Does Index Futures Trading Reduce Volatility in the Chinese Stock Market? A Panel Data Evaluation Approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 33(12), pages 1167-1190, December.
    11. Christoffersen, Peter & Lunde, Asger & Olesen, Kasper V., 2019. "Factor Structure in Commodity Futures Return and Volatility," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 54(3), pages 1083-1115, June.
    12. Martin T. Bohl & Jeanne Diesteldorf & Christian A. Salm & Bernd Wilfling, 2016. "Spot Market Volatility and Futures Trading: The Pitfalls of Using a Dummy Variable Approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(1), pages 30-45, January.
    13. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    14. repec:wyi:journl:002169 is not listed on IDEAS
    15. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
    16. Veronica Guerrieri & Guido Lorenzoni & Ludwig Straub & Iván Werning, 2022. "Macroeconomic Implications of COVID-19: Can Negative Supply Shocks Cause Demand Shortages?," American Economic Review, American Economic Association, vol. 112(5), pages 1437-1474, May.
    17. Itay Goldstein & Ralph S J Koijen & Holger M Mueller, 2021. "COVID-19 and Its Impact on Financial Markets and the Real Economy [A model of endogenous risk intolerance and LSAPs: Asset prices and aggregate demand in a “COVID-19” shock]," The Review of Financial Studies, Society for Financial Studies, vol. 34(11), pages 5135-5148.
    18. Wen, Fenghua & Liu, Zhen & Dai, Zhifeng & He, Shaoyi & Liu, Wenhua, 2022. "Multi-scale risk contagion among international oil market, Chinese commodity market and Chinese stock market: A MODWT-Vine quantile regression approach," Energy Economics, Elsevier, vol. 109(C).
    19. Bohl, Martin T. & Irwin, Scott H. & Pütz, Alexander & Sulewski, Christoph, 2023. "The impact of financialization on the efficiency of commodity futures markets," Journal of Commodity Markets, Elsevier, vol. 31(C).
    20. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    21. Bardgett, Chris & Gourier, Elise & Leippold, Markus, 2019. "Inferring volatility dynamics and risk premia from the S&P 500 and VIX markets," Journal of Financial Economics, Elsevier, vol. 131(3), pages 593-618.
    22. Yu‐Lun Chen & Yin‐Feng Gau, 2022. "The information effect of order flows in foreign currency futures and spot markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(8), pages 1549-1572, August.
    23. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    24. Wadud, Sania & Gronwald, Marc & Durand, Robert B. & Lee, Seungho, 2023. "Co-movement between commodity and equity markets revisited—An application of the Thick Pen method," International Review of Financial Analysis, Elsevier, vol. 87(C).
    25. James H. Stock & Mark W. Watson, 2012. "Generalized Shrinkage Methods for Forecasting Using Many Predictors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(4), pages 481-493, June.
    26. Jonathan Brogaard & Andrew Detzel, 2015. "The Asset-Pricing Implications of Government Economic Policy Uncertainty," Management Science, INFORMS, vol. 61(1), pages 3-18, January.
    27. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    28. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    29. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2016. "Exploiting the errors: A simple approach for improved volatility forecasting," Journal of Econometrics, Elsevier, vol. 192(1), pages 1-18.
    30. Suleyman Basak & Anna Pavlova, 2016. "A Model of Financialization of Commodities," Journal of Finance, American Finance Association, vol. 71(4), pages 1511-1556, August.
    31. Zhanhui Chen & Ralitsa Petkova, 2012. "Does Idiosyncratic Volatility Proxy for Risk Exposure?," The Review of Financial Studies, Society for Financial Studies, vol. 25(9), pages 2745-2787.
    32. Lu, Fei & Ma, Feng & Guo, Qiang, 2023. "Less is more? New evidence from stock market volatility predictability," International Review of Financial Analysis, Elsevier, vol. 89(C).
    33. Hong, Yun & Li, Yi, 2020. "Housing prices and investor sentiment dynamics: Evidence from China using a wavelet approach," Finance Research Letters, Elsevier, vol. 35(C).
    34. Ma, Feng & Liu, Jing & Wahab, M.I.M. & Zhang, Yaojie, 2018. "Forecasting the aggregate oil price volatility in a data-rich environment," Economic Modelling, Elsevier, vol. 72(C), pages 320-332.
    35. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    36. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
    37. Michael D. McKenzie & Timothy J. Brailsford & Robert W. Faff, 2001. "New insights into the impact of the introduction of futures trading on stock price volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 21(3), pages 237-255, March.
    38. Ordu, Beyza Mina & Oran, Adil & Soytas, Ugur, 2018. "Is food financialized? Yes, but only when liquidity is abundant," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 82-96.
    39. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ouyang, Ruolan & Pei, Tiancheng & Fang, Yi & Zhao, Yang, 2024. "Commodity systemic risk and macroeconomic predictions," Energy Economics, Elsevier, vol. 138(C).
    2. Maghyereh, Aktham & Ziadat, Salem Adel & Al Rababa'a, Abdel Razzaq A., 2024. "Exploring the dynamic connections between oil price shocks and bond yields in developed nations: A TVP-SVAR-SV approach," Energy, Elsevier, vol. 306(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niu, Zibo & Demirer, Riza & Suleman, Muhammad Tahir & Zhang, Hongwei & Zhu, Xuehong, 2024. "Do industries predict stock market volatility? Evidence from machine learning models," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 90(C).
    2. Danyan Wen & Mengxi He & Yaojie Zhang & Yudong Wang, 2022. "Forecasting realized volatility of Chinese stock market: A simple but efficient truncated approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 230-251, March.
    3. Chun, Dohyun & Cho, Hoon & Ryu, Doojin, 2023. "Discovering the drivers of stock market volatility in a data-rich world," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 82(C).
    4. Li, Zhao-Chen & Xie, Chi & Wang, Gang-Jin & Zhu, You & Zeng, Zhi-Jian & Gong, Jue, 2024. "Forecasting global stock market volatilities: A shrinkage heterogeneous autoregressive (HAR) model with a large cross-market predictor set," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 673-711.
    5. Niu, Zibo & Ma, Feng & Zhang, Hongwei, 2022. "The role of uncertainty measures in volatility forecasting of the crude oil futures market before and during the COVID-19 pandemic," Energy Economics, Elsevier, vol. 112(C).
    6. Liu, Guangqiang & Guo, Xiaozhu, 2022. "Forecasting stock market volatility using commodity futures volatility information," Resources Policy, Elsevier, vol. 75(C).
    7. Zhang, Hongwei & Zhao, Xinyi & Gao, Wang & Niu, Zibo, 2023. "The role of higher moments in predicting China's oil futures volatility: Evidence from machine learning models," Journal of Commodity Markets, Elsevier, vol. 32(C).
    8. Zhang, Yaojie & Wei, Yu & Zhang, Yi & Jin, Daxiang, 2019. "Forecasting oil price volatility: Forecast combination versus shrinkage method," Energy Economics, Elsevier, vol. 80(C), pages 423-433.
    9. Xue Gong & Weiguo Zhang & Yuan Zhao & Xin Ye, 2023. "Forecasting stock volatility with a large set of predictors: A new forecast combination method," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1622-1647, November.
    10. Liang, Chao & Ma, Feng & Li, Ziyang & Li, Yan, 2020. "Which types of commodity price information are more useful for predicting US stock market volatility?," Economic Modelling, Elsevier, vol. 93(C), pages 642-650.
    11. Luo, Qin & Ma, Feng & Wang, Jiqian & Wu, You, 2024. "Changing determinant driver and oil volatility forecasting: A comprehensive analysis," Energy Economics, Elsevier, vol. 129(C).
    12. Xu, Yongan & Wang, Jianqiong & Chen, Zhonglu & Liang, Chao, 2021. "Economic policy uncertainty and stock market returns: New evidence," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    13. Cheng, Mingmian & Swanson, Norman R. & Yang, Xiye, 2021. "Forecasting volatility using double shrinkage methods," Journal of Empirical Finance, Elsevier, vol. 62(C), pages 46-61.
    14. Yaojie Zhang & Yudong Wang & Feng Ma, 2021. "Forecasting US stock market volatility: How to use international volatility information," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 733-768, August.
    15. Feng Ma & M. I. M. Wahab & Julien Chevallier & Ziyang Li, 2023. "A tug of war of forecasting the US stock market volatility: Oil futures overnight versus intraday information," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 60-75, January.
    16. Lu, Fei & Ma, Feng & Guo, Qiang, 2023. "Less is more? New evidence from stock market volatility predictability," International Review of Financial Analysis, Elsevier, vol. 89(C).
    17. He, Mengxi & Wang, Yudong & Zeng, Qing & Zhang, Yaojie, 2023. "Forecasting aggregate stock market volatility with industry volatilities: The role of spillover index," Research in International Business and Finance, Elsevier, vol. 65(C).
    18. Yaojie Zhang & Mengxi He & Yuqi Zhao & Xianfeng Hao, 2023. "Predicting stock realized variance based on an asymmetric robust regression approach," Bulletin of Economic Research, Wiley Blackwell, vol. 75(4), pages 1022-1047, October.
    19. Fameliti Stavroula & Skintzi Vasiliki, 2024. "Macroeconomic attention and commodity market volatility," Empirical Economics, Springer, vol. 67(5), pages 1967-2007, November.
    20. Díaz, Juan D. & Hansen, Erwin & Cabrera, Gabriel, 2024. "Machine-learning stock market volatility: Predictability, drivers, and economic value," International Review of Financial Analysis, Elsevier, vol. 94(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:94:y:2024:i:c:s1057521924001947. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620166 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.