IDEAS home Printed from https://ideas.repec.org/a/eee/finana/v83y2022ics1057521922002745.html
   My bibliography  Save this article

Quantile connectedness between sentiment and financial markets: Evidence from the S&P 500 twitter sentiment index

Author

Listed:
  • Yousaf, Imran
  • Youssef, Manel
  • Goodell, John W.

Abstract

We examine the quantile connectedness of returns between the recently developed S&P 500 Twitter Sentiment Index and various asset classes. Rather than a mean-based connectedness measure, we apply quantile-connectedness to explore connectedness of means and, especially, extreme left and right tails of distributions. Using mean-based connectedness measures, the level of return connectedness between the twitter sentiment index and all financial markets is a modest 46%. However, when applying a novel quantile-based connectedness approach, we find that levels of tail-connectedness are much stronger, up to 82%, at extreme upper and lower tails. This suggests that the impact of sentiment on financial markets is much stronger during extreme positive/negative sentiment shocks. Moreover, return connectedness measures are less volatile during extreme events. Net connectedness analysis shows that the Twitter sentiment index acts as a net transmitter of return spillovers, highlighting the leading role of investor sentiment on predicting other financial markets.

Suggested Citation

  • Yousaf, Imran & Youssef, Manel & Goodell, John W., 2022. "Quantile connectedness between sentiment and financial markets: Evidence from the S&P 500 twitter sentiment index," International Review of Financial Analysis, Elsevier, vol. 83(C).
  • Handle: RePEc:eee:finana:v:83:y:2022:i:c:s1057521922002745
    DOI: 10.1016/j.irfa.2022.102322
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1057521922002745
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.irfa.2022.102322?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yarovaya, Larisa & Brzeszczyński, Janusz & Goodell, John W. & Lucey, Brian & Lau, Chi Keung Marco, 2022. "Rethinking financial contagion: Information transmission mechanism during the COVID-19 pandemic," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
    2. Imran Yousaf & Shoaib Ali & Syed Zulfiqar Ali Shah, 2018. "Herding behavior in Ramadan and financial crises: the case of the Pakistani stock market," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 4(1), pages 1-14, December.
    3. Smales, Lee A. & Yang, Yi, 2015. "The importance of belief dispersion in the response of gold futures to macroeconomic announcements," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 292-302.
    4. Betz, Frank & Hautsch, Nikolaus & Peltonen, Tuomas A. & Schienle, Melanie, 2016. "Systemic risk spillovers in the European banking and sovereign network," Journal of Financial Stability, Elsevier, vol. 25(C), pages 206-224.
    5. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    6. Han, Heejoon & Linton, Oliver & Oka, Tatsushi & Whang, Yoon-Jae, 2016. "The cross-quantilogram: Measuring quantile dependence and testing directional predictability between time series," Journal of Econometrics, Elsevier, vol. 193(1), pages 251-270.
    7. Shleifer, Andrei & Summers, Lawrence H, 1990. "The Noise Trader Approach to Finance," Journal of Economic Perspectives, American Economic Association, vol. 4(2), pages 19-33, Spring.
    8. Zhao, Ruwei, 2020. "Quantifying the cross sectional relation of daily happiness sentiment and stock return: Evidence from US," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    9. Dash, Saumya Ranjan & Maitra, Debasish, 2022. "The COVID-19 pandemic uncertainty, investor sentiment, and global equity markets: Evidence from the time-frequency co-movements," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    10. Baker, Malcolm & Stein, Jeremy C., 2004. "Market liquidity as a sentiment indicator," Journal of Financial Markets, Elsevier, vol. 7(3), pages 271-299, June.
    11. Bahloul, Walid & Bouri, Abdelfettah, 2016. "The impact of investor sentiment on returns and conditional volatility in U.S. futures markets," Journal of Multinational Financial Management, Elsevier, vol. 36(C), pages 89-102.
    12. Malcolm Baker & Jeffrey Wurgler, 2006. "Investor Sentiment and the Cross‐Section of Stock Returns," Journal of Finance, American Finance Association, vol. 61(4), pages 1645-1680, August.
    13. Qadan, Mahmoud & Nama, Hazar, 2018. "Investor sentiment and the price of oil," Energy Economics, Elsevier, vol. 69(C), pages 42-58.
    14. Zhi Da & Joseph Engelberg & Pengjie Gao, 2015. "Editor's Choice The Sum of All FEARS Investor Sentiment and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 28(1), pages 1-32.
    15. Piñeiro-Chousa, Juan & López-Cabarcos, M.Ángeles & Caby, Jérôme & Šević, Aleksandar, 2021. "The influence of investor sentiment on the green bond market," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    16. Suardi, Sandy & Rasel, Atiqur Rahman & Liu, Bin, 2022. "On the predictive power of tweet sentiments and attention on bitcoin," International Review of Economics & Finance, Elsevier, vol. 79(C), pages 289-301.
    17. Bouri, Elie & Demirer, Riza & Gabauer, David & Gupta, Rangan, 2022. "Financial market connectedness: The role of investors’ happiness," Finance Research Letters, Elsevier, vol. 44(C).
    18. Shaen Corbet & Charles Larkin & Brian M. Lucey & Andrew Meegan & Larisa Yarovaya, 2020. "The impact of macroeconomic news on Bitcoin returns," The European Journal of Finance, Taylor & Francis Journals, vol. 26(14), pages 1396-1416, September.
    19. Malcolm Baker & Jeffrey Wurgler, 2007. "Investor Sentiment in the Stock Market," Journal of Economic Perspectives, American Economic Association, vol. 21(2), pages 129-152, Spring.
    20. Stambaugh, Robert F. & Yu, Jianfeng & Yuan, Yu, 2012. "The short of it: Investor sentiment and anomalies," Journal of Financial Economics, Elsevier, vol. 104(2), pages 288-302.
    21. Naeem, Muhammad Abubakr & Farid, Saqib & Faruk, Balli & Shahzad, Syed Jawad Hussain, 2020. "Can happiness predict future volatility in stock markets?," Research in International Business and Finance, Elsevier, vol. 54(C).
    22. Zhang, Wei & Li, Xiao & Shen, Dehua & Teglio, Andrea, 2016. "Daily happiness and stock returns: Some international evidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 201-209.
    23. De Long, J Bradford & Andrei Shleifer & Lawrence H. Summers & Robert J. Waldmann, 1990. "Noise Trader Risk in Financial Markets," Journal of Political Economy, University of Chicago Press, vol. 98(4), pages 703-738, August.
    24. Paul C. Tetlock, 2011. "All the News That's Fit to Reprint: Do Investors React to Stale Information?," The Review of Financial Studies, Society for Financial Studies, vol. 24(5), pages 1481-1512.
    25. Lee, Charles M C & Shleifer, Andrei & Thaler, Richard H, 1991. "Investor Sentiment and the Closed-End Fund Puzzle," Journal of Finance, American Finance Association, vol. 46(1), pages 75-109, March.
    26. Umar, Zaghum & Gubareva, Mariya & Yousaf, Imran & Ali, Shoaib, 2021. "A tale of company fundamentals vs sentiment driven pricing: The case of GameStop," Journal of Behavioral and Experimental Finance, Elsevier, vol. 30(C).
    27. Pedro Piccoli & Mo Chaudhury, 2018. "Overreaction to extreme market events and investor sentiment," Applied Economics Letters, Taylor & Francis Journals, vol. 25(2), pages 115-118, January.
    28. Corbet, Shaen & Goodell, John W. & Günay, Samet, 2022. "What drives DeFi prices? Investigating the effects of investor attention," Finance Research Letters, Elsevier, vol. 48(C).
    29. Baker, Malcolm & Wurgler, Jeffrey & Yuan, Yu, 2012. "Global, local, and contagious investor sentiment," Journal of Financial Economics, Elsevier, vol. 104(2), pages 272-287.
    30. Bouri, Elie & Lucey, Brian & Saeed, Tareq & Vo, Xuan Vinh, 2020. "Extreme spillovers across Asian-Pacific currencies: A quantile-based analysis," International Review of Financial Analysis, Elsevier, vol. 72(C).
    31. Piñeiro-Chousa, Juan & López-Cabarcos, M. Ángeles & Šević, Aleksandar, 2022. "Green bond market and Sentiment: Is there a switching Behaviour?," Journal of Business Research, Elsevier, vol. 141(C), pages 520-527.
    32. Kraaijeveld, Olivier & De Smedt, Johannes, 2020. "The predictive power of public Twitter sentiment for forecasting cryptocurrency prices," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 65(C).
    33. Corbet, Shaen & Goodell, John W. & Günay, Samet, 2020. "Co-movements and spillovers of oil and renewable firms under extreme conditions: New evidence from negative WTI prices during COVID-19," Energy Economics, Elsevier, vol. 92(C).
    34. Gabriele Ranco & Darko Aleksovski & Guido Caldarelli & Miha Grčar & Igor Mozetič, 2015. "The Effects of Twitter Sentiment on Stock Price Returns," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-21, September.
    35. You, Wanhai & Guo, Yawei & Peng, Cheng, 2017. "Twitter's daily happiness sentiment and the predictability of stock returns," Finance Research Letters, Elsevier, vol. 23(C), pages 58-64.
    36. Akihiro Omura & Neda Todorova, 2019. "The quantile dependence of commodity futures markets on news sentiment," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(7), pages 818-837, July.
    37. Gan, Baoqing & Alexeev, Vitali & Bird, Ron & Yeung, Danny, 2020. "Sensitivity to sentiment: News vs social media," International Review of Financial Analysis, Elsevier, vol. 67(C).
    38. Walid Bahloul & Rangan Gupta, 2018. "Impact of macroeconomic news surprises and uncertainty for major economies on returns and volatility of oil futures," International Economics, CEPII research center, issue 156, pages 247-253.
    39. J. Christopher Hughen & Cynthia G. McDonald, 2005. "Who Are The Noise Traders?," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 28(2), pages 281-298, June.
    40. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    41. Hu, Yitong & Li, Xiao & Goodell, John W. & Shen, Dehua, 2021. "Investor attention shocks and stock co-movement: Substitution or reinforcement?," International Review of Financial Analysis, Elsevier, vol. 73(C).
    42. Juan Piñeiro-Chousa & M.Ángeles López-Cabarcos & Jérôme Caby & Aleksandar Šević, 2021. "The influence of investor sentiment on the green bond market," Post-Print hal-02960892, HAL.
    43. Yousaf, Imran, 2021. "Risk transmission from the COVID-19 to metals and energy markets," Resources Policy, Elsevier, vol. 73(C).
    44. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    45. Paul C. Tetlock & Maytal Saar‐Tsechansky & Sofus Macskassy, 2008. "More Than Words: Quantifying Language to Measure Firms' Fundamentals," Journal of Finance, American Finance Association, vol. 63(3), pages 1437-1467, June.
    46. Shen, Dehua & Urquhart, Andrew & Wang, Pengfei, 2019. "Does twitter predict Bitcoin?," Economics Letters, Elsevier, vol. 174(C), pages 118-122.
    47. Gu, Chen & Kurov, Alexander, 2020. "Informational role of social media: Evidence from Twitter sentiment," Journal of Banking & Finance, Elsevier, vol. 121(C).
    48. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    49. Li, Yue & Goodell, John W. & Shen, Dehua, 2021. "Comparing search-engine and social-media attentions in finance research: Evidence from cryptocurrencies," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 723-746.
    50. Xianfang Su & Yong Li, 2020. "Dynamic sentiment spillovers among crude oil, gold, and Bitcoin markets: Evidence from time and frequency domain analyses," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-26, December.
    51. Lee, Wayne Y. & Jiang, Christine X. & Indro, Daniel C., 2002. "Stock market volatility, excess returns, and the role of investor sentiment," Journal of Banking & Finance, Elsevier, vol. 26(12), pages 2277-2299.
    52. Meng, Xiangcai & Huang, Chia-Hsing, 2019. "The time-frequency co-movement of Asian effective exchange rates: A wavelet approach with daily data," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 131-148.
    53. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    54. John Conlisk, 1996. "Why Bounded Rationality?," Journal of Economic Literature, American Economic Association, vol. 34(2), pages 669-700, June.
    55. Vytautas Karalevicius & Niels Degrande & Jochen De Weerdt, 2018. "Using sentiment analysis to predict interday Bitcoin price movements," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 19(1), pages 56-75, December.
    56. Liang, Chao & Tang, Linchun & Li, Yan & Wei, Yu, 2020. "Which sentiment index is more informative to forecast stock market volatility? Evidence from China," International Review of Financial Analysis, Elsevier, vol. 71(C).
    57. Frugier, Alain, 2016. "Returns, volatility and investor sentiment: Evidence from European stock markets," Research in International Business and Finance, Elsevier, vol. 38(C), pages 45-55.
    58. Li, Yue & W. Goodell, John & Shen, Dehua, 2021. "Does happiness forecast implied volatility? Evidence from nonparametric wave-based Granger causality testing," The Quarterly Review of Economics and Finance, Elsevier, vol. 81(C), pages 113-122.
    59. Timm O. Sprenger & Philipp G. Sandner & Andranik Tumasjan & Isabell M. Welpe, 2014. "News or Noise? Using Twitter to Identify and Understand Company-specific News Flow," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 41(7-8), pages 791-830, September.
    60. Li, Xiao & Shen, Dehua & Xue, Mei & Zhang, Wei, 2017. "Daily happiness and stock returns: The case of Chinese company listed in the United States," Economic Modelling, Elsevier, vol. 64(C), pages 496-501.
    61. Zhang, Jiahang & Zhang, Chi, 2022. "Do cryptocurrency markets react to issuer sentiments? Evidence from Twitter," Research in International Business and Finance, Elsevier, vol. 61(C).
    62. Chatterjee, Ujjal & French, Joseph J., 2022. "A note on tweeting and equity markets before and during the Covid-19 pandemic," Finance Research Letters, Elsevier, vol. 46(PA).
    63. Di Wu, 2019. "Does Social Media Get Your Attention?," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 20(2), pages 213-226, April.
    64. Jacques Vella Critien & Albert Gatt & Joshua Ellul, 2022. "Bitcoin price change and trend prediction through twitter sentiment and data volume," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-20, December.
    65. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    66. Maghyereh, Aktham & Abdoh, Hussein, 2020. "The tail dependence structure between investor sentiment and commodity markets," Resources Policy, Elsevier, vol. 68(C).
    67. Naeem, Muhammad Abubakr & Mbarki, Imen & Shahzad, Syed Jawad Hussain, 2021. "Predictive role of online investor sentiment for cryptocurrency market: Evidence from happiness and fears," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 496-514.
    68. Shahzad, Syed Jawad Hussain & Raza, Naveed & Balcilar, Mehmet & Ali, Sajid & Shahbaz, Muhammad, 2017. "Can economic policy uncertainty and investors sentiment predict commodities returns and volatility?," Resources Policy, Elsevier, vol. 53(C), pages 208-218.
    69. Shen, Dehua & Li, Xiao & Zhang, Wei, 2017. "Baidu news coverage and its impacts on order imbalance and large-size trade of Chinese stocks," Finance Research Letters, Elsevier, vol. 23(C), pages 210-216.
    70. Ho, Chienwei & Hung, Chi-Hsiou, 2009. "Investor sentiment as conditioning information in asset pricing," Journal of Banking & Finance, Elsevier, vol. 33(5), pages 892-903, May.
    71. Zhao, Ruwei, 2020. "Quantifying the cross sectional relation of daily happiness sentiment and return skewness: Evidence from US industries," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
    72. Thomas Lux, 2011. "Sentiment dynamics and stock returns: the case of the German stock market," Empirical Economics, Springer, vol. 41(3), pages 663-679, December.
    73. Pham, Linh & Cepni, Oguzhan, 2022. "Extreme directional spillovers between investor attention and green bond markets," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 186-210.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anwer, Zaheer & Khan, Muhammad Arif & Hassan, M. Kabir & Singh, Manjeet Kaur Harnek, 2024. "Assessing dynamic co-movement of news based uncertainty indices and distance-to -default of global FinTech firms," Research in International Business and Finance, Elsevier, vol. 71(C).
    2. Tang, Zhenpeng & Lin, Qiaofeng & Cai, Yi & Chen, Kaijie & Liu, Dinggao, 2024. "Harnessing the power of real-time forum opinion: Unveiling its impact on stock market dynamics using intraday high-frequency data in China," International Review of Financial Analysis, Elsevier, vol. 93(C).
    3. Farrukh Nawaz & Mrestyal Khan & Umar Kayani & Indry Aristianto Pradipta & Aulia Luqman Aziz, 2024. "Impact of Volatility Spillovers upon Electric Utilities during the Russia-Ukraine Conflict," International Journal of Energy Economics and Policy, Econjournals, vol. 14(6), pages 597-604, November.
    4. Ouyang, Zisheng & Zhou, Xuewei & Wang, Gang-jin & Liu, Shuwen & Lu, Min, 2024. "Multilayer networks in the frequency domain: Measuring volatility connectedness among Chinese financial institutions," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 909-928.
    5. Bouteska, Ahmed & Hajek, Petr & Abedin, Mohammad Zoynul & Dong, Yizhe, 2023. "Effect of twitter investor engagement on cryptocurrencies during the COVID-19 pandemic," Research in International Business and Finance, Elsevier, vol. 64(C).
    6. Rehman, Mobeen Ur & Vo, Xuan Vinh & Ko, Hee-Un & Ahmad, Nasir & Kang, Sang Hoon, 2023. "Quantile connectedness between Chinese stock and commodity futures markets," Research in International Business and Finance, Elsevier, vol. 64(C).
    7. Yousaf, Imran & Hunjra, Ahmed Imran & Alshater, Muneer M. & Bouri, Elie & Li, Yanshuang, 2023. "Multidimensional connectedness among the volatility of global financial markets around the Russian-Ukrainian conflict," Pacific-Basin Finance Journal, Elsevier, vol. 82(C).
    8. Tong, Zezheng & Goodell, John W. & Shen, Dehua, 2022. "Assessing causal relationships between cryptocurrencies and investor attention: New results from transfer entropy methodology," Finance Research Letters, Elsevier, vol. 50(C).
    9. Abakah, Emmanuel Joel Aikins & Adeabah, David & Tiwari, Aviral Kumar & Abdullah, Mohammad, 2023. "Effect of Russia–Ukraine war sentiment on blockchain and FinTech stocks," International Review of Financial Analysis, Elsevier, vol. 90(C).
    10. Zhu, Huiming & Li, Shuang & Huang, Zishan, 2023. "Frequency domain quantile dependence and connectedness between crude oil and exchange rates: Evidence from oil-importing and exporting countries," The Quarterly Review of Economics and Finance, Elsevier, vol. 90(C), pages 1-30.
    11. Bossman, Ahmed & Gubareva, Mariya & Teplova, Tamara, 2023. "Asymmetric effects of market uncertainties on agricultural commodities," Energy Economics, Elsevier, vol. 127(PB).
    12. Mohammed, Kamel Si & Obeid, Hassan & Oueslati, Karim & Kaabia, Olfa, 2023. "Investor sentiments, economic policy uncertainty, US interest rates, and financial assets: Examining their interdependence over time," Finance Research Letters, Elsevier, vol. 57(C).
    13. Nyakurukwa, Kingstone & Seetharam, Yudhvir, 2023. "Quantile and asymmetric return connectedness among BRICS stock markets," The Journal of Economic Asymmetries, Elsevier, vol. 27(C).
    14. Ghosh, Bikramaditya & Gubareva, Mariya & Ghosh, Anandita & Paparas, Dimitrios & Vo, Xuan Vinh, 2024. "Food, energy, and water nexus: A study on interconnectedness and trade-offs," Energy Economics, Elsevier, vol. 133(C).
    15. Asadi, Mehrad & Tiwari, Aviral Kumar & Gholami, Samad & Ghasemi, Hamid Reza & Roubaud, David, 2023. "Understanding interconnections among steel, coal, iron ore, and financial assets in the US and China using an advanced methodology," International Review of Financial Analysis, Elsevier, vol. 89(C).
    16. Ghosh, Bikramaditya & Pham, Linh & Gubareva, Mariya & Teplova, Tamara, 2023. "Energy transition metals and global sentiment: Evidence from extreme quantiles," Resources Policy, Elsevier, vol. 86(PA).
    17. Ghosh, Indranil & Alfaro-Cortés, Esteban & Gámez, Matías & García-Rubio, Noelia, 2024. "Reflections of public perception of Russia-Ukraine conflict and Metaverse on the financial outlook of Metaverse coins: Fresh evidence from Reddit sentiment analysis," International Review of Financial Analysis, Elsevier, vol. 93(C).
    18. Li, Jia & Yang, Jianfei, 2024. "Financial shocks, investor sentiment, and heterogeneous firms’ output volatility: Evidence from credit asset securitization markets," Finance Research Letters, Elsevier, vol. 60(C).
    19. Li, Yanshuang & Shi, Yujie & Shi, Yongdong & Yi, Shangkun & Zhang, Weiping, 2023. "COVID-19 vaccinations and risk spillovers: Evidence from Asia-Pacific stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 79(C).
    20. Yousaf, Imran & Assaf, Ata & Demir, Ender, 2024. "Relationship between real estate tokens and other asset classes: Evidence from quantile connectedness approach," Research in International Business and Finance, Elsevier, vol. 69(C).
    21. Zhang, Hongwei & Zhang, Yubo & Gao, Wang & Li, Yingli, 2023. "Extreme quantile spillovers and drivers among clean energy, electricity and energy metals markets," International Review of Financial Analysis, Elsevier, vol. 86(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naeem, Muhammad Abubakr & Farid, Saqib & Faruk, Balli & Shahzad, Syed Jawad Hussain, 2020. "Can happiness predict future volatility in stock markets?," Research in International Business and Finance, Elsevier, vol. 54(C).
    2. Jia, Boxiang & Shen, Dehua & Zhang, Wei, 2022. "Extreme sentiment and herding: Evidence from the cryptocurrency market," Research in International Business and Finance, Elsevier, vol. 63(C).
    3. Al-Nasseri, Alya & Menla Ali, Faek & Tucker, Allan, 2021. "Investor sentiment and the dispersion of stock returns: Evidence based on the social network of investors," International Review of Financial Analysis, Elsevier, vol. 78(C).
    4. Daniel Perez-Liston & Daniel Huerta-Sanchez & Juan Gutierrez, 2018. "Do Domestic Sentiment and the Spillover of US Investor Sentiment Impact Mexican Stock Market Returns?," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 17(2_suppl), pages 185-212, August.
    5. Huynh, Toan Luu Duc & Foglia, Matteo & Nasir, Muhammad Ali & Angelini, Eliana, 2021. "Feverish sentiment and global equity markets during the COVID-19 pandemic," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 1088-1108.
    6. Naeem, Muhammad Abubakr & Mbarki, Imen & Shahzad, Syed Jawad Hussain, 2021. "Predictive role of online investor sentiment for cryptocurrency market: Evidence from happiness and fears," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 496-514.
    7. Ghosh, Bikramaditya & Pham, Linh & Gubareva, Mariya & Teplova, Tamara, 2023. "Energy transition metals and global sentiment: Evidence from extreme quantiles," Resources Policy, Elsevier, vol. 86(PA).
    8. Yongan Xu & Jianqiong Wang & Zhonglu Chen & Chao Liang, 2023. "Sentiment indices and stock returns: Evidence from China," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(1), pages 1063-1080, January.
    9. Bennett, Donyetta & Mekelburg, Erik & Strauss, Jack & Williams, T.H., 2024. "Unlocking the black box of sentiment and cryptocurrency: What, which, why, when and how?," Global Finance Journal, Elsevier, vol. 60(C).
    10. Gric, Zuzana & Bajzík, Josef & Badura, Ondřej, 2023. "Does sentiment affect stock returns? A meta-analysis across survey-based measures," International Review of Financial Analysis, Elsevier, vol. 89(C).
    11. Di, Li & Shaiban, Mohammed Sharaf & Hasanov, Akram Shavkatovich, 2021. "The power of investor sentiment in explaining bank stock performance: Listed conventional vs. Islamic banks," Pacific-Basin Finance Journal, Elsevier, vol. 66(C).
    12. Li, Xiao & Shen, Dehua & Xue, Mei & Zhang, Wei, 2017. "Daily happiness and stock returns: The case of Chinese company listed in the United States," Economic Modelling, Elsevier, vol. 64(C), pages 496-501.
    13. Chen, Rongda & Bao, Weiwei & Jin, Chenglu, 2021. "Investor sentiment and predictability for volatility on energy futures Markets: Evidence from China," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 112-129.
    14. Bouri, Elie & Demirer, Riza & Gabauer, David & Gupta, Rangan, 2022. "Financial market connectedness: The role of investors’ happiness," Finance Research Letters, Elsevier, vol. 44(C).
    15. Seok, Sang Ik & Cho, Hoon & Ryu, Doojin, 2019. "Firm-specific investor sentiment and daily stock returns," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    16. Szymon Lis, 2022. "Investor Sentiment in Asset Pricing Models: A Review," Working Papers 2022-14, Faculty of Economic Sciences, University of Warsaw.
    17. Wang, Wenzhao & Su, Chen & Duxbury, Darren, 2022. "The conditional impact of investor sentiment in global stock markets: A two-channel examination," Journal of Banking & Finance, Elsevier, vol. 138(C).
    18. Szymon Lis, 2024. "Investor Sentiment in Asset Pricing Models: A Review of Empirical Evidence," Papers 2411.13180, arXiv.org.
    19. Ahmed, Bouteska, 2020. "Understanding the impact of investor sentiment on the price formation process: A review of the conduct of American stock markets," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    20. Li, Yue & W. Goodell, John & Shen, Dehua, 2021. "Does happiness forecast implied volatility? Evidence from nonparametric wave-based Granger causality testing," The Quarterly Review of Economics and Finance, Elsevier, vol. 81(C), pages 113-122.

    More about this item

    Keywords

    S&P500 twitter sentiment index; Financial markets; Quantile-based connectedness measures; Extreme sentiment spillovers;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G41 - Financial Economics - - Behavioral Finance - - - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on Decision Making in Financial Markets
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:83:y:2022:i:c:s1057521922002745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620166 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.