IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/06-14.html
   My bibliography  Save this paper

The cross-quantilogram: measuring quantile dependence and testing directional predictability between time series

Author

Listed:
  • Heejoon Han

    (Institute for Fiscal Studies)

  • Oliver Linton

    (Institute for Fiscal Studies and University of Cambridge)

  • Tatsushi Oka

    (Institute for Fiscal Studies)

  • Yoon-Jae Whang

    (Institute for Fiscal Studies and SNU)

Abstract

This paper proposes the cross-quantilogram to measure the quantile dependence between two time series. We apply it to test the hypothesis that one time series has no directional predictability to another time series. We establish the asymptotic distribution of the cross quantilogram and the corresponding test statistic. The limiting distributions depend on nuisance parameters. To construct consistent confi?dence intervals we employ the stationary bootstrap procedure; we show the consistency of this bootstrap. Also, we consider the self-normalized approach, which is shown to be asymptotically pivotal under the null hypothesis of no predictability. We provide simulation studies and two empirical applications. First, we use the cross-quantilogram to detect predictability from stock variance to excess stock return. Compared to existing tools used in the literature of stock return predictability, our method provides a more complete relationship between a predictor and stock return. Second, we investigate the systemic risk of individual fi?nancial institutions, such as JP Morgan Chase, Goldman Sachs and AIG. This article has supplementary materials online.

Suggested Citation

  • Heejoon Han & Oliver Linton & Tatsushi Oka & Yoon-Jae Whang, 2014. "The cross-quantilogram: measuring quantile dependence and testing directional predictability between time series," CeMMAP working papers CWP06/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:06/14
    as

    Download full text from publisher

    File URL: http://www.cemmap.ac.uk/wps/cwp061414.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    2. Lobato I. N., 2001. "Testing That a Dependent Process Is Uncorrelated," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1066-1076, September.
    3. Xiaofeng Shao, 2010. "Corrigendum: A self‐normalized approach to confidence interval construction in time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(5), pages 695-696, November.
    4. Yixiao Sun & Peter C. B. Phillips & Sainan Jin, 2008. "Optimal Bandwidth Selection in Heteroskedasticity-Autocorrelation Robust Testing," Econometrica, Econometric Society, vol. 76(1), pages 175-194, January.
    5. Corradi, Valentina & Swanson, Norman R., 2006. "Bootstrap conditional distribution tests in the presence of dynamic misspecification," Journal of Econometrics, Elsevier, vol. 133(2), pages 779-806, August.
    6. Davis, Richard A. & Mikosch, Thomas & Zhao, Yuwei, 2013. "Measures of serial extremal dependence and their estimation," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2575-2602.
    7. Pierce, David A. & Haugh, Larry D., 1977. "Causality in temporal systems : Characterization and a survey," Journal of Econometrics, Elsevier, vol. 5(3), pages 265-293, May.
    8. Bucher, Axel, 2013. "A note on weak convergence of the sequential multivariate empirical process under strong mixing," LIDAM Discussion Papers ISBA 2013028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Andrew Patton & Dimitris Politis & Halbert White, 2009. "Correction to “Automatic Block-Length Selection for the Dependent Bootstrap” by D. Politis and H. White," Econometric Reviews, Taylor & Francis Journals, vol. 28(4), pages 372-375.
    10. Larry D. Haugh & David A. Pierce, 1977. "Causality in temporal systems: characterizations and a survey," Special Studies Papers 87, Board of Governors of the Federal Reserve System (U.S.).
    11. Dimitrios Bisias & Mark Flood & Andrew W. Lo & Stavros Valavanis, 2012. "A Survey of Systemic Risk Analytics," Annual Review of Financial Economics, Annual Reviews, vol. 4(1), pages 255-296, October.
    12. Laurini, Márcio Poletti & Furlani, Luiz Gustavo Cassilatti & Portugal, Marcelo Savino, 2008. "Empirical market microstructure: An analysis of the BRL/US$ exchange rate market," Emerging Markets Review, Elsevier, vol. 9(4), pages 247-265, December.
    13. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    14. Kim, Min Seong & Sun, Yixiao, 2011. "Spatial heteroskedasticity and autocorrelation consistent estimation of covariance matrix," Journal of Econometrics, Elsevier, vol. 160(2), pages 349-371, February.
    15. Hong, Yongmiao, 1996. "Consistent Testing for Serial Correlation of Unknown Form," Econometrica, Econometric Society, vol. 64(4), pages 837-864, July.
    16. Xiaofeng Shao, 2010. "A self‐normalized approach to confidence interval construction in time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 343-366, June.
    17. Nicholas M. Kiefer & Timothy J. Vogelsang & Helle Bunzel, 2000. "Simple Robust Testing of Regression Hypotheses," Econometrica, Econometric Society, vol. 68(3), pages 695-714, May.
    18. Nicholas M. Kiefer & Timothy J. Vogelsang, 2002. "Heteroskedasticity-Autocorrelation Robust Standard Errors Using The Bartlett Kernel Without Truncation," Econometrica, Econometric Society, vol. 70(5), pages 2093-2095, September.
    19. Linton, O. & Whang, Yoon-Jae, 2007. "The quantilogram: With an application to evaluating directional predictability," Journal of Econometrics, Elsevier, vol. 141(1), pages 250-282, November.
    20. Hong, Yongmiao & Liu, Yanhui & Wang, Shouyang, 2009. "Granger causality in risk and detection of extreme risk spillover between financial markets," Journal of Econometrics, Elsevier, vol. 150(2), pages 271-287, June.
    21. Li, Ta-Hsin, 2008. "Laplace Periodogram for Time Series Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 757-768, June.
    22. Bunzel H. & Kiefer N. M. & Vogelsang T. J., 2001. "Simple Robust Testing of Hypotheses in Nonlinear Models," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1088-1096, September.
    23. Heejoon Han, 2015. "Asymptotic Properties of GARCH-X Processes," Journal of Financial Econometrics, Oxford University Press, vol. 13(1), pages 188-221.
    24. Segers, Johan, 2012. "Asymptotics of empirical copula processes under non-restrictive smoothness assumptions," LIDAM Reprints ISBA 2012009, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    25. Sun, Yixiao & Kim, Min Seong, 2012. "Simple and powerful GMM over-identification tests with accurate size," Journal of Econometrics, Elsevier, vol. 166(2), pages 267-281.
    26. Yi-Ting Chen & Zhongjun Qu, 2015. "M Tests with a New Normalization Matrix," Econometric Reviews, Taylor & Francis Journals, vol. 34(5), pages 617-652, May.
    27. Dimitris Politis & Halbert White, 2004. "Automatic Block-Length Selection for the Dependent Bootstrap," Econometric Reviews, Taylor & Francis Journals, vol. 23(1), pages 53-70.
    28. Ta-Hsin Li, 2012. "Quantile Periodograms," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 765-776, June.
    29. White, Halbert & Kim, Tae-Hwan & Manganelli, Simone, 2015. "VAR for VaR: Measuring tail dependence using multivariate regression quantiles," Journal of Econometrics, Elsevier, vol. 187(1), pages 169-188.
    30. Bai, Jushan, 1996. "Testing for Parameter Constancy in Linear Regressions: An Empirical Distribution Function Approach," Econometrica, Econometric Society, vol. 64(3), pages 597-622, May.
    31. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    32. Kiefer, Nicholas M. & Vogelsang, Timothy J., 2005. "A New Asymptotic Theory For Heteroskedasticity-Autocorrelation Robust Tests," Econometric Theory, Cambridge University Press, vol. 21(6), pages 1130-1164, December.
    33. Kuan, Chung-Ming & Lee, Wei-Ming, 2006. "Robust M Tests Without Consistent Estimation of the Asymptotic Covariance Matrix," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1264-1275, September.
    34. Ta-Hsin Li, 2014. "Quantile Periodogram And Time-Dependent Variance," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(4), pages 322-340, July.
    35. Antonio Galvao & Kengo Kato & Gabriel Montes-Rojas & Jose Olmo, 2014. "Testing linearity against threshold effects: uniform inference in quantile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(2), pages 413-439, April.
    36. Rustam Ibragimov & Dwight Jaffee & Johan Walden, 2009. "Nondiversification Traps in Catastrophe Insurance Markets," The Review of Financial Studies, Society for Financial Studies, vol. 22(3), pages 959-993, March.
    37. Peter Christoffersen & Francis X. Diebold, 2002. "Financial Asset Returns, Market Timing, and Volatility Dynamics," CIRANO Working Papers 2002s-02, CIRANO.
    38. Kato, Kengo, 2009. "Asymptotics for argmin processes: Convexity arguments," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1816-1829, September.
    39. Chiao Yi Chang & Fu Shuen Shie, 2011. "The Relation Between Relative Order Imbalance and Intraday Futures Returns: An Application of the Quantile Regression Model to Taiwan," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 47(3), pages 69-87, May.
    40. Davis, Richard A. & Mikosch, Thomas & Cribben, Ivor, 2012. "Towards estimating extremal serial dependence via the bootstrapped extremogram," Journal of Econometrics, Elsevier, vol. 170(1), pages 142-152.
    41. Rustam Ibragimov & Dwight Jaffee & Johan Walden, 2009. "Nondiversification Traps in Catastrophe Insurance Markets," The Review of Financial Studies, Society for Financial Studies, vol. 22(3), pages 959-993.
    42. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    43. Yongmiao Hong, 2000. "Generalized spectral tests for serial dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(3), pages 557-574.
    44. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    45. Miguel Arcones, 1998. "Second Order Representations of the Least Absolute Deviation Regression Estimator," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(1), pages 87-117, March.
    46. Laurini, Márcio P. & Furlani, Luiz G. C. & Portugual, Marcelo S., 2008. "Empirical Market Microstructure: An Analysis Of The Brl/Us$ Exchange Rate Market Using High-Frequency Data," Insper Working Papers wpe_103, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.
    47. Pollard, David, 1991. "Asymptotics for Least Absolute Deviation Regression Estimators," Econometric Theory, Cambridge University Press, vol. 7(2), pages 186-199, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi-Ting Chen & Zhongjun Qu, 2015. "M Tests with a New Normalization Matrix," Econometric Reviews, Taylor & Francis Journals, vol. 34(5), pages 617-652, May.
    2. Jozef Baruník & Tobias Kley, 2019. "Quantile coherency: A general measure for dependence between cyclical economic variables," The Econometrics Journal, Royal Economic Society, vol. 22(2), pages 131-152.
    3. Lee, Wei-Ming & Kuan, Chung-Ming & Hsu, Yu-Chin, 2014. "Testing over-identifying restrictions without consistent estimation of the asymptotic covariance matrix," Journal of Econometrics, Elsevier, vol. 181(2), pages 181-193.
    4. Aviral Kumar Tiwari & Muhammad Shahbaz & Rabeh Khalfaoui & Rizwan Ahmed & Shawkat Hammoudeh, 2024. "Directional predictability from energy markets to exchange rates and stock markets in the emerging market countries (E7 + 1): New evidence from cross‐quantilogram approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(1), pages 719-789, January.
    5. Xiaofeng Shao, 2010. "A self‐normalized approach to confidence interval construction in time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 343-366, June.
    6. Stefan Birr & Stanislav Volgushev & Tobias Kley & Holger Dette & Marc Hallin, 2017. "Quantile spectral analysis for locally stationary time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1619-1643, November.
    7. Kim, Min Seong & Sun, Yixiao, 2013. "Heteroskedasticity and spatiotemporal dependence robust inference for linear panel models with fixed effects," Journal of Econometrics, Elsevier, vol. 177(1), pages 85-108.
    8. Yuichi Goto & Tobias Kley & Ria Van Hecke & Stanislav Volgushev & Holger Dette & Marc Hallin, 2021. "The Integrated Copula Spectrum," Working Papers ECARES 2021-29, ULB -- Universite Libre de Bruxelles.
    9. Zhang, Xianyang & Shao, Xiaofeng, 2013. "On a general class of long run variance estimators," Economics Letters, Elsevier, vol. 120(3), pages 437-441.
    10. Zhang, Xianyang, 2016. "Fixed-smoothing asymptotics in the generalized empirical likelihood estimation framework," Journal of Econometrics, Elsevier, vol. 193(1), pages 123-146.
    11. Daniel J. Nordman & Helle Bunzel & Soumendra N. Lahiri, 2012. "A Non-standard Empirical Likelihood for Time Series," CREATES Research Papers 2012-55, Department of Economics and Business Economics, Aarhus University.
    12. Xuexin Wang & Yixiao Sun, 2020. "An Asymptotic F Test for Uncorrelatedness in the Presence of Time Series Dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(4), pages 536-550, July.
    13. Corbet, Shaen & Katsiampa, Paraskevi & Lau, Chi Keung Marco, 2020. "Measuring quantile dependence and testing directional predictability between Bitcoin, altcoins and traditional financial assets," International Review of Financial Analysis, Elsevier, vol. 71(C).
    14. Holger Dette & Marc Hallin & Tobias Kley & Stanislav Volgushev, 2011. "Of Copulas, Quantiles, Ranks and Spectra - An L1-Approach to Spectral Analysis," Working Papers ECARES ECARES 2011-038, ULB -- Universite Libre de Bruxelles.
    15. Hong, Yongmiao & Linton, Oliver & McCabe, Brendan & Sun, Jiajing & Wang, Shouyang, 2024. "Kolmogorov–Smirnov type testing for structural breaks: A new adjusted-range based self-normalization approach," Journal of Econometrics, Elsevier, vol. 238(2).
    16. Kim, Seonjin & Zhao, Zhibiao & Shao, Xiaofeng, 2015. "Nonparametric functional central limit theorem for time series regression with application to self-normalized confidence interval," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 277-290.
    17. Zhang, Jingsi & Jiang, Wenxin & Shao, Xiaofeng, 2013. "Bayesian model selection based on parameter estimates from subsamples," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 979-986.
    18. Hwang, Jungbin & Sun, Yixiao, 2018. "Should we go one step further? An accurate comparison of one-step and two-step procedures in a generalized method of moments framework," Journal of Econometrics, Elsevier, vol. 207(2), pages 381-405.
    19. Uribe, Jorge M. & Guillen, Montserrat & Mosquera-López, Stephania, 2018. "Uncovering the nonlinear predictive causality between natural gas and electricity prices," Energy Economics, Elsevier, vol. 74(C), pages 904-916.
    20. Yi-Ting Chen, 2016. "Testing for Granger Causality in Moments," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(2), pages 265-288, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:06/14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emma Hyman (email available below). General contact details of provider: https://edirc.repec.org/data/cmifsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.