IDEAS home Printed from https://ideas.repec.org/a/eee/riibaf/v64y2023ics0275531922001969.html
   My bibliography  Save this article

Quantile connectedness between Chinese stock and commodity futures markets

Author

Listed:
  • Rehman, Mobeen Ur
  • Vo, Xuan Vinh
  • Ko, Hee-Un
  • Ahmad, Nasir
  • Kang, Sang Hoon

Abstract

In this study, we examine the static and dynamic connectedness between the conventional Chinese stock market and commodity futures (aluminum, gold, copper, steel rebar, natural rubber, and zinc). Our results show that both steel rebar and gold receive whereas zinc and copper transmit changes across all quantiles. However, spillover behavior of aluminum, natural rubber, and CSI 300 vary across different quantiles. Our results have implications for investors who are considering a mix of Chinese conventional stocks and commodity futures in their portfolios. Our findings also provide insights for investing under different market conditions by providing results for static as well as dynamic connectedness between CSI 300 and the commodities market.

Suggested Citation

  • Rehman, Mobeen Ur & Vo, Xuan Vinh & Ko, Hee-Un & Ahmad, Nasir & Kang, Sang Hoon, 2023. "Quantile connectedness between Chinese stock and commodity futures markets," Research in International Business and Finance, Elsevier, vol. 64(C).
  • Handle: RePEc:eee:riibaf:v:64:y:2023:i:c:s0275531922001969
    DOI: 10.1016/j.ribaf.2022.101810
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0275531922001969
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ribaf.2022.101810?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmed, Abdullahi D. & Huo, Rui, 2021. "Volatility transmissions across international oil market, commodity futures and stock markets: Empirical evidence from China," Energy Economics, Elsevier, vol. 93(C).
    2. Sang Hoon Kang & Seong‐Min Yoon, 2020. "Dynamic correlation and volatility spillovers across Chinese stock and commodity futures markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 25(2), pages 261-273, April.
    3. Qingfu Liu & Yiuman Tse & Linlin Zhang, 2018. "Including commodity futures in asset allocation in China," Quantitative Finance, Taylor & Francis Journals, vol. 18(9), pages 1487-1499, September.
    4. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    5. Ahmet Goncu, 2021. "Effects of Covid-19 Pandemic on Chinese Commodity Futures Markets," Papers 2106.09250, arXiv.org.
    6. Jozef Baruník & Tomáš Křehlík, 2018. "Measuring the Frequency Dynamics of Financial Connectedness and Systemic Risk," Journal of Financial Econometrics, Oxford University Press, vol. 16(2), pages 271-296.
    7. Chatziantoniou, Ioannis & Gabauer, David & Stenfors, Alexis, 2021. "Interest rate swaps and the transmission mechanism of monetary policy: A quantile connectedness approach," Economics Letters, Elsevier, vol. 204(C).
    8. Al-Yahyaee, Khamis Hamed & Rehman, Mobeen Ur & Wanas Al-Jarrah, Idries Mohammad & Mensi, Walid & Vo, Xuan Vinh, 2020. "Co-movements and spillovers between prices of precious metals and non-ferrous metals: A multiscale analysis," Resources Policy, Elsevier, vol. 67(C).
    9. Saiful Izzuan Hussain & Steven Li, 2022. "Dependence structure between oil and other commodity futures in China based on extreme value theory and copulas," The World Economy, Wiley Blackwell, vol. 45(1), pages 317-335, January.
    10. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    11. Kocaarslan, Baris & Soytas, Ugur, 2019. "Dynamic correlations between oil prices and the stock prices of clean energy and technology firms: The role of reserve currency (US dollar)," Energy Economics, Elsevier, vol. 84(C).
    12. Wen, Fenghua & Cao, Jiahui & Liu, Zhen & Wang, Xiong, 2021. "Dynamic volatility spillovers and investment strategies between the Chinese stock market and commodity markets," International Review of Financial Analysis, Elsevier, vol. 76(C).
    13. Mensi, Walid & Rehman, Mobeen Ur & Vo, Xuan Vinh, 2021. "Risk spillovers and diversification between oil and non-ferrous metals during bear and bull market states," Resources Policy, Elsevier, vol. 72(C).
    14. Syed Jawad Hussain Shahzad & Elie Bouri & Mobeen Ur Rehman & David Roubaud, 2022. "The hedge asset for BRICS stock markets: Bitcoin, gold or VIX," The World Economy, Wiley Blackwell, vol. 45(1), pages 292-316, January.
    15. Chen, James Ming & Rehman, Mobeen Ur & Vo, Xuan Vinh, 2021. "Clustering commodity markets in space and time: Clarifying returns, volatility, and trading regimes through unsupervised machine learning," Resources Policy, Elsevier, vol. 73(C).
    16. Yoon, Seong-Min & Al Mamun, Md & Uddin, Gazi Salah & Kang, Sang Hoon, 2019. "Network connectedness and net spillover between financial and commodity markets," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 801-818.
    17. Rehman, Mobeen Ur & Kang, Sang Hoon, 2021. "A time–frequency comovement and causality relationship between Bitcoin hashrate and energy commodity markets," Global Finance Journal, Elsevier, vol. 49(C).
    18. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    19. Yousaf, Imran & Youssef, Manel & Goodell, John W., 2022. "Quantile connectedness between sentiment and financial markets: Evidence from the S&P 500 twitter sentiment index," International Review of Financial Analysis, Elsevier, vol. 83(C).
    20. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    21. Binqing Xiao & Honghai Yu & Libing Fang & Sifang Ding, 2020. "Estimating the connectedness of commodity futures using a network approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(4), pages 598-616, April.
    22. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    23. Gongmeng Chen & Michael Firth & Yu Xin, 2004. "The Price-Volume Relationship in China's Commodity Futures Markets," Chinese Economy, Taylor & Francis Journals, vol. 37(3), pages 87-122, May.
    24. Ivan Indriawan & Qingfu Liu & Yiuman Tse, 2019. "Market quality and the connectedness of steel rebar and other industrial metal futures in China," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(11), pages 1383-1393, November.
    25. Lin Zhao, 2020. "The Impact of Introducing Nighttime Trading Hours: Revisiting the Chinese Commodity Futures Market," Chinese Economy, Taylor & Francis Journals, vol. 54(2), pages 124-144, October.
    26. Elnahass, Marwa & Salama, Aly & Yusuf, Noora, 2022. "Earnings management and internal governance mechanisms: The role of religiosity," Research in International Business and Finance, Elsevier, vol. 59(C).
    27. Rehman, Mobeen Ur & Vo, Xuan Vinh, 2021. "Energy commodities, precious metals and industrial metal markets: A nexus across different investment horizons and market conditions," Resources Policy, Elsevier, vol. 70(C).
    28. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    29. Niu, Hongli & Hu, Ziang, 2021. "Information transmission and entropy-based network between Chinese stock market and commodity futures market," Resources Policy, Elsevier, vol. 74(C).
    30. Kang, Sang Hoon & Lee, Jang Woo, 2019. "The network connectedness of volatility spillovers across global futures markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    31. Wang, Gang-Jin & Xie, Chi & Jiang, Zhi-Qiang & Eugene Stanley, H., 2016. "Who are the net senders and recipients of volatility spillovers in China’s financial markets?," Finance Research Letters, Elsevier, vol. 18(C), pages 255-262.
    32. Bouri, Elie & Lucey, Brian & Saeed, Tareq & Vo, Xuan Vinh, 2021. "The realized volatility of commodity futures: Interconnectedness and determinants#," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 139-151.
    33. Hasbrouck, Joel, 1993. "Assessing the Quality of a Security Market: A New Approach to Transaction-Cost Measurement," The Review of Financial Studies, Society for Financial Studies, vol. 6(1), pages 191-212.
    34. repec:ipg:wpaper:2014-561 is not listed on IDEAS
    35. Wen, Xiaoqian & Nguyen, Duc Khuong, 2017. "Can investors of Chinese energy stocks benefit from diversification into commodity futures?," Economic Modelling, Elsevier, vol. 66(C), pages 184-200.
    36. Yang, Baochen & Pu, Yingjian & Su, Yunpeng, 2020. "The financialization of Chinese commodity markets," Finance Research Letters, Elsevier, vol. 34(C).
    37. Ferrer, Román & Shahzad, Syed Jawad Hussain & López, Raquel & Jareño, Francisco, 2018. "Time and frequency dynamics of connectedness between renewable energy stocks and crude oil prices," Energy Economics, Elsevier, vol. 76(C), pages 1-20.
    38. Wang, Yilin & Zhang, Zeming & Li, Xiafei & Chen, Xiaodan & Wei, Yu, 2020. "Dynamic return connectedness across global commodity futures markets: Evidence from time and frequency domains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    39. Hammoudeh, Shawkat & Nguyen, Duc Khuong & Reboredo, Juan Carlos & Wen, Xiaoqian, 2014. "Dependence of stock and commodity futures markets in China: Implications for portfolio investment," Emerging Markets Review, Elsevier, vol. 21(C), pages 183-200.
    40. Kang, Sang Hoon & Yoon, Seong-Min, 2019. "Financial crises and dynamic spillovers among Chinese stock and commodity futures markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    41. Rehman, Mobeen Ur & Bouri, Elie & Eraslan, Veysel & Kumar, Satish, 2019. "Energy and non-energy commodities: An asymmetric approach towards portfolio diversification in the commodity market," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    42. Mensi, Walid & Rehman, Mobeen Ur & Vo, Xuan Vinh, 2020. "Spillovers and co-movements between precious metals and energy markets: Implications on portfolio management," Resources Policy, Elsevier, vol. 69(C).
    43. Fung, Hung-Gay & Tse, Yiuman & Yau, Jot & Zhao, Lin, 2013. "A leader of the world commodity futures markets in the making? The case of China's commodity futures," International Review of Financial Analysis, Elsevier, vol. 27(C), pages 103-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ouyang, Zisheng & Zhou, Xuewei, 2023. "Interconnected networks: Measuring extreme risk connectedness between China’s financial sector and real estate sector," International Review of Financial Analysis, Elsevier, vol. 90(C).
    2. Youtao Xiang & Sumuya Borjigin, 2024. "High–low volatility spillover network between economic policy uncertainty and commodity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(8), pages 1295-1319, August.
    3. Li, Yueshan & Chen, Shoudong & Sensoy, Ahmet & Wang, Lu, 2024. "Over-expected shocks and financial market security: Evidence from China's markets," Research in International Business and Finance, Elsevier, vol. 68(C).
    4. Umar, Zaghum & Hadhri, Sinda & Abakah, Emmanuel Joel Aikins & Usman, Muhammad & Umar, Muhammad, 2024. "Return and volatility spillovers among oil price shocks and international green bond markets," Research in International Business and Finance, Elsevier, vol. 69(C).
    5. Ouyang, Zisheng & Zhou, Xuewei & Lu, Min & Liu, Ke, 2024. "Imported financial risk in global stock markets: Evidence from the interconnected network," Research in International Business and Finance, Elsevier, vol. 69(C).
    6. Mensi, Walid & Ahmadian-Yazdi, Farzaneh & Al-Kharusi, Sami & Roudari, Soheil & Kang, Sang Hoon, 2024. "Extreme Connectedness Across Chinese Stock and Commodity Futures Markets," Research in International Business and Finance, Elsevier, vol. 70(PA).
    7. Aharon, David Y. & Ali, Shoaib, 2024. "A high-frequency data dive into SVB collapse," Finance Research Letters, Elsevier, vol. 59(C).
    8. Chen, Yanan & Qi, Haozhi, 2024. "Dynamic interplay between Chinese energy, renewable energy stocks, and commodity markets: Time-frequency causality study," Renewable Energy, Elsevier, vol. 228(C).
    9. Ozcelebi, Oguzhan & Kang, Sang Hoon, 2024. "Extreme connectedness and network across financial assets and commodity futures markets," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mensi, Walid & Ahmadian-Yazdi, Farzaneh & Al-Kharusi, Sami & Roudari, Soheil & Kang, Sang Hoon, 2024. "Extreme Connectedness Across Chinese Stock and Commodity Futures Markets," Research in International Business and Finance, Elsevier, vol. 70(PA).
    2. Gong, Xu & Xu, Jun & Liu, Tangyong & Zhou, Zicheng, 2022. "Dynamic volatility connectedness between industrial metal markets," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    3. Billah, Mabruk & Karim, Sitara & Naeem, Muhammad Abubakr & Vigne, Samuel A., 2022. "Return and volatility spillovers between energy and BRIC markets: Evidence from quantile connectedness," Research in International Business and Finance, Elsevier, vol. 62(C).
    4. Asadi, Mehrad & Tiwari, Aviral Kumar & Gholami, Samad & Ghasemi, Hamid Reza & Roubaud, David, 2023. "Understanding interconnections among steel, coal, iron ore, and financial assets in the US and China using an advanced methodology," International Review of Financial Analysis, Elsevier, vol. 89(C).
    5. Cui, Jinxin & Maghyereh, Aktham & Goh, Mark & Zou, Huiwen, 2022. "Risk spillovers and time-varying links between international oil and China’s commodity futures markets: Fresh evidence from the higher-order moments," Energy, Elsevier, vol. 238(PB).
    6. Bhattacherjee, Purba & Mishra, Sibanjan & Kang, Sang Hoon, 2024. "Extreme time-frequency connectedness across U.S. sector stock and commodity futures markets," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 1176-1197.
    7. Li, Yanshuang & Shi, Yujie & Shi, Yongdong & Yi, Shangkun & Zhang, Weiping, 2023. "COVID-19 vaccinations and risk spillovers: Evidence from Asia-Pacific stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 79(C).
    8. Shang, Jin & Hamori, Shigeyuki, 2024. "Quantile time-frequency connectedness analysis between crude oil, gold, financial markets, and macroeconomic indicators: Evidence from the US and EU," Energy Economics, Elsevier, vol. 132(C).
    9. Wang, Suhui, 2023. "Tail dependence, dynamic linkages, and extreme spillover between the stock and China's commodity markets," Journal of Commodity Markets, Elsevier, vol. 29(C).
    10. Chen, Baifan & Huang, Jionghao & Liu, Danhe & Xia, Xiaohua, 2024. "Time-frequency return connectedness between Chinese coal futures and international stock indices," International Review of Economics & Finance, Elsevier, vol. 89(PB), pages 316-333.
    11. Xu Zhang & Xian Yang & Jianping Li & Jun Hao, 2023. "Contemporaneous and noncontemporaneous idiosyncratic risk spillovers in commodity futures markets: A novel network topology approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(6), pages 705-733, June.
    12. Aharon, David Y. & Kizys, Renatas & Umar, Zaghum & Zaremba, Adam, 2023. "Did David win a battle or the war against Goliath? Dynamic return and volatility connectedness between the GameStop stock and the high short interest indices," Research in International Business and Finance, Elsevier, vol. 64(C).
    13. Cui, Jinxin & Maghyereh, Aktham, 2023. "Higher-order moment risk connectedness and optimal investment strategies between international oil and commodity futures markets: Insights from the COVID-19 pandemic and Russia-Ukraine conflict," International Review of Financial Analysis, Elsevier, vol. 86(C).
    14. Alomari, Mohammad & Mensi, Walid & Vo, Xuan Vinh & Kang, Sang Hoon, 2022. "Extreme return spillovers and connectedness between crude oil and precious metals futures markets: Implications for portfolio management," Resources Policy, Elsevier, vol. 79(C).
    15. Zhang, Hongwei & Zhang, Yubo & Gao, Wang & Li, Yingli, 2023. "Extreme quantile spillovers and drivers among clean energy, electricity and energy metals markets," International Review of Financial Analysis, Elsevier, vol. 86(C).
    16. Yousaf, Imran & Hunjra, Ahmed Imran & Alshater, Muneer M. & Bouri, Elie & Li, Yanshuang, 2023. "Multidimensional connectedness among the volatility of global financial markets around the Russian-Ukrainian conflict," Pacific-Basin Finance Journal, Elsevier, vol. 82(C).
    17. Pierre L. Siklos & Martin Stefan & Claudia Wellenreuther, 2020. "Metal prices made in China? A network analysis of industrial metal futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(9), pages 1354-1374, September.
    18. Dai, Zhifeng & Zhu, Junxin & Zhang, Xinhua, 2022. "Time-frequency connectedness and cross-quantile dependence between crude oil, Chinese commodity market, stock market and investor sentiment," Energy Economics, Elsevier, vol. 114(C).
    19. Cesario Mateus & Miramir Bagirov & Irina Mateus, 2024. "Return and volatility connectedness and net directional patterns in spillover transmissions: East and Southeast Asian equity markets," International Review of Finance, International Review of Finance Ltd., vol. 24(1), pages 83-103, March.
    20. Billah, Mabruk & Amar, Amine Ben & Balli, Faruk, 2023. "The extreme return connectedness between Sukuk and green bonds and their determinants and consequences for investors," Pacific-Basin Finance Journal, Elsevier, vol. 77(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:riibaf:v:64:y:2023:i:c:s0275531922001969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ribaf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.