IDEAS home Printed from https://ideas.repec.org/a/eee/finana/v73y2021ics1057521920302556.html
   My bibliography  Save this article

Can the Chinese volatility index reflect investor sentiment?

Author

Listed:
  • Long, Wen
  • Zhao, Manyi
  • Tang, Yeran

Abstract

The volatility index is the implied volatility calculated inversely from the option prices. This study investigates whether the official Chinese volatility index, iVX, can represent investor sentiment. In order to describe investor sentiment comprehensively, we build a three-dimensional investor sentiment measurement system composed of macro, meso and micro level, and decompose iVX into three components to obtain short-term, medium-term fluctuations and long-term trend by EEMD method. The relationships between iVX, its components and sentiment indexes at each level have been analyzed separately, and the empirical results reveal all components of iVX can reflect the investor sentiment at the corresponding level but to which extent they can reflect are not the same. Further we introduce the mixed-frequency dynamic factor analysis to extract the common sentiment factor, which shows stronger correlation with contemporaneous iVX, compared with the sentiment indexes at each level. The ADL model in robustness check also demonstrates the results. Our findings confirm iVX can represent the common sentiment and expectations of Chinese investors in different time scales.

Suggested Citation

  • Long, Wen & Zhao, Manyi & Tang, Yeran, 2021. "Can the Chinese volatility index reflect investor sentiment?," International Review of Financial Analysis, Elsevier, vol. 73(C).
  • Handle: RePEc:eee:finana:v:73:y:2021:i:c:s1057521920302556
    DOI: 10.1016/j.irfa.2020.101612
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1057521920302556
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.irfa.2020.101612?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sanjiv R. Das & Mike Y. Chen, 2007. "Yahoo! for Amazon: Sentiment Extraction from Small Talk on the Web," Management Science, INFORMS, vol. 53(9), pages 1375-1388, September.
    2. Zhang, Xun & Lai, K.K. & Wang, Shou-Yang, 2008. "A new approach for crude oil price analysis based on Empirical Mode Decomposition," Energy Economics, Elsevier, vol. 30(3), pages 905-918, May.
    3. Malcolm Baker & Jeffrey Wurgler, 2006. "Investor Sentiment and the Cross‐Section of Stock Returns," Journal of Finance, American Finance Association, vol. 61(4), pages 1645-1680, August.
    4. R. Jared Delisle & James S. Doran & David R. Peterson, 2011. "Asymmetric pricing of implied systematic volatility in the cross‐section of expected returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 31(1), pages 34-54, January.
    5. Koopman, Siem Jan & Harvey, Andrew, 2003. "Computing observation weights for signal extraction and filtering," Journal of Economic Dynamics and Control, Elsevier, vol. 27(7), pages 1317-1333, May.
    6. Zhang, Xun & Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2009. "Estimating the impact of extreme events on crude oil price: An EMD-based event analysis method," Energy Economics, Elsevier, vol. 31(5), pages 768-778, September.
    7. Renault, Thomas, 2017. "Intraday online investor sentiment and return patterns in the U.S. stock market," Journal of Banking & Finance, Elsevier, vol. 84(C), pages 25-40.
    8. Malcolm Baker & Jeffrey Wurgler, 2007. "Investor Sentiment in the Stock Market," Journal of Economic Perspectives, American Economic Association, vol. 21(2), pages 129-152, Spring.
    9. Xu, Hai-Chuan & Zhou, Wei-Xing, 2018. "A weekly sentiment index and the cross-section of stock returns," Finance Research Letters, Elsevier, vol. 27(C), pages 135-139.
    10. Lee, Charles M C & Shleifer, Andrei & Thaler, Richard H, 1991. "Investor Sentiment and the Closed-End Fund Puzzle," Journal of Finance, American Finance Association, vol. 46(1), pages 75-109, March.
    11. Mitchell, Douglas W. & Speaker, Paul J., 1986. "A simple, flexible distributed lag technique : The polynomial inverse lag," Journal of Econometrics, Elsevier, vol. 31(3), pages 329-340, April.
    12. Thomas Renault, 2017. "Intraday online investor sentiment and return patterns in the U.S. stock market," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03205113, HAL.
    13. GIOT, Pierre, 2002. "Implied volatility indices as leading indicators of stock index returns ?," LIDAM Discussion Papers CORE 2002050, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    14. Tissaoui, Kais & Azibi, Jamel, 2019. "International implied volatility risk indexes and Saudi stock return-volatility predictabilities," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 65-84.
    15. repec:bla:jfinan:v:53:y:1998:i:5:p:1775-1798 is not listed on IDEAS
    16. Jupeng Li & Xiaoli Yu & Xingguo Luo, 2019. "Volatility index and the return–volatility relation: Intraday evidence from Chinese options market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(11), pages 1348-1359, November.
    17. Behrendt, Simon & Schmidt, Alexander, 2018. "The Twitter myth revisited: Intraday investor sentiment, Twitter activity and individual-level stock return volatility," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 355-367.
    18. Lily Qiu & Ivo Welch, 2004. "Investor Sentiment Measures," NBER Working Papers 10794, National Bureau of Economic Research, Inc.
    19. Dimos S. Kambouroudis & David G. McMillan & Katerina Tsakou, 2016. "Forecasting Stock Return Volatility: A Comparison of GARCH, Implied Volatility, and Realized Volatility Models," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(12), pages 1127-1163, December.
    20. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
    21. Tsukioka, Yasutomo & Yanagi, Junya & Takada, Teruko, 2018. "Investor sentiment extracted from internet stock message boards and IPO puzzles," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 205-217.
    22. Qadan, Mahmoud & Kliger, Doron & Chen, Nir, 2019. "Idiosyncratic volatility, the VIX and stock returns," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 431-441.
    23. Qiao, Gaoxiu & Teng, Yuxin & Li, Weiping & Liu, Wenwen, 2019. "Improving volatility forecasting based on Chinese volatility index information: Evidence from CSI 300 index and futures markets," The North American Journal of Economics and Finance, Elsevier, vol. 49(C), pages 133-151.
    24. Smales, Lee A., 2014. "News sentiment and the investor fear gauge," Finance Research Letters, Elsevier, vol. 11(2), pages 122-130.
    25. Po-Chin Wu & Sheng-Chieh Pan & Xue-Ling Tai, 2015. "Non-linearity, persistence and spillover effects in stock returns: the role of the volatility index," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 42(3), pages 597-613, August.
    26. Canina, Linda & Figlewski, Stephen, 1993. "The Informational Content of Implied Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 659-681.
    27. Basher, Syed Abul & Sadorsky, Perry, 2016. "Hedging emerging market stock prices with oil, gold, VIX, and bonds: A comparison between DCC, ADCC and GO-GARCH," Energy Economics, Elsevier, vol. 54(C), pages 235-247.
    28. Yue Peng & Wing Ng, 2012. "Analysing financial contagion and asymmetric market dependence with volatility indices via copulas," Annals of Finance, Springer, vol. 8(1), pages 49-74, February.
    29. Kim, Soon-Ho & Kim, Dongcheol, 2014. "Investor sentiment from internet message postings and the predictability of stock returns," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PB), pages 708-729.
    30. Chen, Jian & Jiang, Fuwei & Liu, Yangshu & Tu, Jun, 2017. "International volatility risk and Chinese stock return predictability," Journal of International Money and Finance, Elsevier, vol. 70(C), pages 183-203.
    31. Michael Lemmon & Evgenia Portniaguina, 2006. "Consumer Confidence and Asset Prices: Some Empirical Evidence," The Review of Financial Studies, Society for Financial Studies, vol. 19(4), pages 1499-1529.
    32. Martin Martens & Jason Zein, 2004. "Predicting financial volatility: High‐frequency time‐series forecasts vis‐à‐vis implied volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 24(11), pages 1005-1028, November.
    33. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    34. Siriopoulos, Costas & Fassas, Athanasios, 2012. "An investor sentiment barometer — Greek Implied Volatility Index (GRIV)," Global Finance Journal, Elsevier, vol. 23(2), pages 77-93.
    35. Badshah, Ihsan & Bekiros, Stelios & Lucey, Brian M. & Uddin, Gazi Salah, 2018. "Asymmetric linkages among the fear index and emerging market volatility indices," Emerging Markets Review, Elsevier, vol. 37(C), pages 17-31.
    36. Yang, Chih-Yuan & Jhang, Ling-Jhen & Chang, Chia-Chien, 2016. "Do investor sentiment, weather and catastrophe effects improve hedging performance? Evidence from the Taiwan options market," Pacific-Basin Finance Journal, Elsevier, vol. 37(C), pages 35-51.
    37. Schmeling, Maik, 2009. "Investor sentiment and stock returns: Some international evidence," Journal of Empirical Finance, Elsevier, vol. 16(3), pages 394-408, June.
    38. Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2008. "Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm," Energy Economics, Elsevier, vol. 30(5), pages 2623-2635, September.
    39. Rama Cont, 2007. "Volatility Clustering in Financial Markets: Empirical Facts and Agent-Based Models," Springer Books, in: Gilles Teyssière & Alan P. Kirman (ed.), Long Memory in Economics, pages 289-309, Springer.
    40. Lucas, Robert E., 1977. "Understanding business cycles," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 5(1), pages 7-29, January.
    41. Kanniainen, Juho & Lin, Binghuan & Yang, Hanxue, 2014. "Estimating and using GARCH models with VIX data for option valuation," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 200-211.
    42. L.A. Smales, 2017. "The importance of fear: investor sentiment and stock market returns," Applied Economics, Taylor & Francis Journals, vol. 49(34), pages 3395-3421, July.
    43. repec:bla:jfinan:v:59:y:2004:i:3:p:1259-1294 is not listed on IDEAS
    44. Sarwar, Ghulam, 2012. "Is VIX an investor fear gauge in BRIC equity markets?," Journal of Multinational Financial Management, Elsevier, vol. 22(3), pages 55-65.
    45. Smales, L.A., 2016. "Risk-on/Risk-off: Financial market response to investor fear," Finance Research Letters, Elsevier, vol. 17(C), pages 125-134.
    46. Brice Dupoyet & Robert T. Daigler & Zhiyao Chen, 2011. "A simplified pricing model for volatility futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 31(4), pages 307-339, April.
    47. Pan, Wei-Fong, 2018. "Sentiment and asset price bubble in the precious metals markets," Finance Research Letters, Elsevier, vol. 26(C), pages 106-111.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gunay, Samet & Goodell, John W. & Muhammed, Shahnawaz & Kirimhan, Destan, 2023. "Frequency connectedness between FinTech, NFT and DeFi: Considering linkages to investor sentiment," International Review of Financial Analysis, Elsevier, vol. 90(C).
    2. Song, Ziyu & Gong, Xiaomin & Zhang, Cheng & Yu, Changrui, 2023. "Investor sentiment based on scaled PCA method: A powerful predictor of realized volatility in the Chinese stock market," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 528-545.
    3. Shen, Yiran & Liu, Chang & Sun, Xiaolei & Guo, Kun, 2023. "Investor sentiment and the Chinese new energy stock market: A risk–return perspective," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 395-408.
    4. Dhasmana, Samriddhi & Ghosh, Sajal & Kanjilal, Kakali, 2023. "Does investor sentiment influence ESG stock performance? Evidence from India," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    5. Ye, Wuyi & Xia, Wenjing & Wu, Bin & Chen, Pengzhan, 2022. "Using implied volatility jumps for realized volatility forecasting: Evidence from the Chinese market," International Review of Financial Analysis, Elsevier, vol. 83(C).
    6. Chen, Yu & Lin, Boqiang, 2022. "Quantifying the extreme spillovers on worldwide ESG leaders' equity," International Review of Financial Analysis, Elsevier, vol. 84(C).
    7. Gong, Xue & Zhang, Weiguo & Wang, Junbo & Wang, Chao, 2022. "Investor sentiment and stock volatility: New evidence," International Review of Financial Analysis, Elsevier, vol. 80(C).
    8. Gao, Zhenbin & Zhang, Jie, 2023. "The fluctuation correlation between investor sentiment and stock index using VMD-LSTM: Evidence from China stock market," The North American Journal of Economics and Finance, Elsevier, vol. 66(C).
    9. Chen, Xinxin & Guo, Yanhong & Song, Yingying, 2024. "Multiple time scales investor sentiment impact the stock market index fluctuation: From margin trading business perspective," The North American Journal of Economics and Finance, Elsevier, vol. 69(PA).
    10. Yue, Tian & Ruan, Xinfeng & Gehricke, Sebastian & Zhang, Jin E., 2023. "The volatility index and volatility risk premium in China," The Quarterly Review of Economics and Finance, Elsevier, vol. 91(C), pages 40-55.
    11. Bouteska, Ahmed & Cardillo, Giovanni & Harasheh, Murad, 2023. "Is it all about noise? Investor sentiment and risk nexus: evidence from China," Finance Research Letters, Elsevier, vol. 57(C).
    12. Zhou, Haonan & Lu, Xinjie, 2023. "Investor attention on the Russia-Ukraine conflict and stock market volatility: Evidence from China," Finance Research Letters, Elsevier, vol. 52(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmoudi, Nader & Docherty, Paul & Melia, Adrian, 2022. "Firm-level investor sentiment and corporate announcement returns," Journal of Banking & Finance, Elsevier, vol. 144(C).
    2. Zachary McGurk & Adam Nowak & Joshua C. Hall, 2020. "Stock returns and investor sentiment: textual analysis and social media," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 44(3), pages 458-485, July.
    3. Fang, Hao & Chung, Chien-Ping & Lu, Yang-Cheng & Lee, Yen-Hsien & Wang, Wen-Hao, 2021. "The impacts of investors' sentiments on stock returns using fintech approaches," International Review of Financial Analysis, Elsevier, vol. 77(C).
    4. Dahmene, Meriam & Boughrara, Adel & Slim, Skander, 2021. "Nonlinearity in stock returns: Do risk aversion, investor sentiment and, monetary policy shocks matter?," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 676-699.
    5. Szymon Lis, 2022. "Investor Sentiment in Asset Pricing Models: A Review," Working Papers 2022-14, Faculty of Economic Sciences, University of Warsaw.
    6. Wang, Wenzhao & Su, Chen & Duxbury, Darren, 2022. "The conditional impact of investor sentiment in global stock markets: A two-channel examination," Journal of Banking & Finance, Elsevier, vol. 138(C).
    7. Mariano González-Sánchez & M. Encina Morales de Vega, 2021. "Influence of Bloomberg’s Investor Sentiment Index: Evidence from European Union Financial Sector," Mathematics, MDPI, vol. 9(4), pages 1-21, February.
    8. Karam KIM & Doojin RYU, 2020. "Predictive ability of investor sentiment for the stock market," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 33-46, December.
    9. Xiong Xiong & Chunchun Luo & Ye Zhang & Shen Lin, 2019. "Do stock bulletin board systems (BBS) contain useful information? A viewpoint of interaction between BBS quality and predicting ability," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(5), pages 1385-1411, March.
    10. Pedro Manuel Nogueira Reis & Carlos Pinho, 2021. "A Reappraisal of the Causal Relationship between Sentiment Proxies and Stock Returns," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 22(4), pages 420-442, October.
    11. Ngoc Bao Vuong, Yoshihisa Suzuki, 2020. "Does Fear has Stronger Impact than Confidence on Stock Returns?The Case of Asia-Pacific Developed Markets," Analele Stiintifice ale Universitatii "Alexandru Ioan Cuza" din Iasi - Stiinte Economice, Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, vol. 67, pages 157-175, July.
    12. Tiwari, Aviral Kumar & Abakah, Emmanuel Joel Aikins & Bonsu, Christiana Osei & Karikari, Nana Kwasi & Hammoudeh, Shawkat, 2022. "The effects of public sentiments and feelings on stock market behavior: Evidence from Australia," Journal of Economic Behavior & Organization, Elsevier, vol. 193(C), pages 443-472.
    13. Wenjie Ding & Khelifa Mazouz & Qingwei Wang, 2019. "Investor sentiment and the cross-section of stock returns: new theory and evidence," Review of Quantitative Finance and Accounting, Springer, vol. 53(2), pages 493-525, August.
    14. Wang, Wenzhao & Duxbury, Darren, 2021. "Institutional investor sentiment and the mean-variance relationship: Global evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 191(C), pages 415-441.
    15. Di, Li & Shaiban, Mohammed Sharaf & Hasanov, Akram Shavkatovich, 2021. "The power of investor sentiment in explaining bank stock performance: Listed conventional vs. Islamic banks," Pacific-Basin Finance Journal, Elsevier, vol. 66(C).
    16. Anand, Abhinav & Basu, Sankarshan & Pathak, Jalaj & Thampy, Ashok, 2021. "The impact of sentiment on emerging stock markets," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 161-177.
    17. Seok, Sang Ik & Cho, Hoon & Ryu, Doojin, 2021. "Stock Market’s responses to intraday investor sentiment," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    18. Eierle, Brigitte & Klamer, Sebastian & Muck, Matthias, 2022. "Does it really pay off for investors to consider information from social media?," International Review of Financial Analysis, Elsevier, vol. 81(C).
    19. Shi, Yong & Tang, Ye-ran & Long, Wen, 2019. "Sentiment contagion analysis of interacting investors: Evidence from China’s stock forum," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 246-259.
    20. Rehman, Mobeen Ur & Sensoy, Ahmet & Eraslan, Veysel & Shahzad, Syed Jawad Hussain & Vo, Xuan Vinh, 2021. "Sensitivity of US equity returns to economic policy uncertainty and investor sentiments," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).

    More about this item

    Keywords

    iVX; Investor sentiment; EEMD; Mixed-frequency dynamic factor analysis; Correlation;
    All these keywords.

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:73:y:2021:i:c:s1057521920302556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620166 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.