IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v31y2009i5p768-778.html
   My bibliography  Save this article

Estimating the impact of extreme events on crude oil price: An EMD-based event analysis method

Author

Listed:
  • Zhang, Xun
  • Yu, Lean
  • Wang, Shouyang
  • Lai, Kin Keung

Abstract

The impact of extreme events on crude oil markets is of great importance in crude oil price analysis due to the fact that those events generally exert strong impact on crude oil markets. For better estimation of the impact of events on crude oil price volatility, this study attempts to use an EMD-based event analysis approach for this task. In the proposed method, the time series to be analyzed is first decomposed into several intrinsic modes with different time scales from fine-to-coarse and an average trend. The decomposed modes respectively capture the fluctuations caused by the extreme event or other factors during the analyzed period. It is found that the total impact of an extreme event is included in only one or several dominant modes, but the secondary modes provide valuable information on subsequent factors. For overlapping events with influences lasting for different periods, their impacts are separated and located in different modes. For illustration and verification purposes, two extreme events, the Persian Gulf War in 1991 and the Iraq War in 2003, are analyzed step by step. The empirical results reveal that the EMD-based event analysis method provides a feasible solution to estimating the impact of extreme events on crude oil prices variation.

Suggested Citation

  • Zhang, Xun & Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2009. "Estimating the impact of extreme events on crude oil price: An EMD-based event analysis method," Energy Economics, Elsevier, vol. 31(5), pages 768-778, September.
  • Handle: RePEc:eee:eneeco:v:31:y:2009:i:5:p:768-778
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140-9883(09)00059-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hillard G. Huntington, 1994. "Oil Price Forecasting in the 1980s: What Went Wrong?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 1-22.
    2. Zhang, Xun & Lai, K.K. & Wang, Shou-Yang, 2008. "A new approach for crude oil price analysis based on Empirical Mode Decomposition," Energy Economics, Elsevier, vol. 30(3), pages 905-918, May.
    3. Scarpa, Elisa & Longo, Chiara & Manera, Matteo & Markandya, Anil, 2007. "Evaluating the Empirical Performance of Alternative Econometric Models for Oil Price Forecasting," International Energy Markets Working Papers 12118, Fondazione Eni Enrico Mattei (FEEM).
    4. Dees, Stephane & Karadeloglou, Pavlos & Kaufmann, Robert K. & Sanchez, Marcelo, 2007. "Modelling the world oil market: Assessment of a quarterly econometric model," Energy Policy, Elsevier, vol. 35(1), pages 178-191, January.
    5. Jean-Thomas Bernard & Lynda Khalaf & Maral Kichian, 2004. "Structural Change and Forecasting Long-Run Energy Prices," Staff Working Papers 04-5, Bank of Canada.
    6. Saeed Moshiri & Faezeh Foroutan, 2006. "Forecasting Nonlinear Crude Oil Futures Prices," The Energy Journal, , vol. 27(4), pages 81-96, October.
    7. Yousefi, Shahriar & Weinreich, Ilona & Reinarz, Dominik, 2005. "Wavelet-based prediction of oil prices," Chaos, Solitons & Fractals, Elsevier, vol. 25(2), pages 265-275.
    8. Zeileis, Achim & Leisch, Friedrich & Hornik, Kurt & Kleiber, Christian, 2002. "strucchange: An R Package for Testing for Structural Change in Linear Regression Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 7(i02).
    9. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    10. Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2008. "Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm," Energy Economics, Elsevier, vol. 30(5), pages 2623-2635, September.
    11. Ye, Michael & Zyren, John & Shore, Joanne, 2006. "Forecasting short-run crude oil price using high- and low-inventory variables," Energy Policy, Elsevier, vol. 34(17), pages 2736-2743, November.
    12. Ye, Michael & Zyren, John & Shore, Joanne, 2005. "A monthly crude oil spot price forecasting model using relative inventories," International Journal of Forecasting, Elsevier, vol. 21(3), pages 491-501.
    13. A. Craig MacKinlay, 1997. "Event Studies in Economics and Finance," Journal of Economic Literature, American Economic Association, vol. 35(1), pages 13-39, March.
    14. Fan, Ying & Liang, Qiang & Wei, Yi-Ming, 2008. "A generalized pattern matching approach for multi-step prediction of crude oil price," Energy Economics, Elsevier, vol. 30(3), pages 889-904, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Kaijian & Yu, Lean & Lai, Kin Keung, 2012. "Crude oil price analysis and forecasting using wavelet decomposed ensemble model," Energy, Elsevier, vol. 46(1), pages 564-574.
    2. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    3. Ai Han & Yanan He & Yongmiao Hong & Shouyang Wang, 2013. "Forecasting Interval-valued Crude Oil Prices via Autoregressive Conditional Interval Models," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    4. Chen, Yanhui & Zhang, Chuan & He, Kaijian & Zheng, Aibing, 2018. "Multi-step-ahead crude oil price forecasting using a hybrid grey wave model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 98-110.
    5. Manel Hamdi & Chaker Aloui, 2015. "Forecasting Crude Oil Price Using Artificial Neural Networks: A Literature Survey," Economics Bulletin, AccessEcon, vol. 35(2), pages 1339-1359.
    6. Wang, Yudong & Liu, Li & Diao, Xundi & Wu, Chongfeng, 2015. "Forecasting the real prices of crude oil under economic and statistical constraints," Energy Economics, Elsevier, vol. 51(C), pages 599-608.
    7. Naser, Hanan, 2016. "Estimating and forecasting the real prices of crude oil: A data rich model using a dynamic model averaging (DMA) approach," Energy Economics, Elsevier, vol. 56(C), pages 75-87.
    8. Xie Haibin & Zhou Mo & Hu Yi & Yu Mei, 2014. "Forecasting the Crude Oil Price with Extreme Values," Journal of Systems Science and Information, De Gruyter, vol. 2(3), pages 193-205, June.
    9. Drachal, Krzysztof, 2016. "Forecasting spot oil price in a dynamic model averaging framework — Have the determinants changed over time?," Energy Economics, Elsevier, vol. 60(C), pages 35-46.
    10. Yu, Lean & Wang, Zishu & Tang, Ling, 2015. "A decomposition–ensemble model with data-characteristic-driven reconstruction for crude oil price forecasting," Applied Energy, Elsevier, vol. 156(C), pages 251-267.
    11. Theodore Syriopoulos & Michael Tsatsaronis & Ioannis Karamanos, 2021. "Support Vector Machine Algorithms: An Application to Ship Price Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 55-87, January.
    12. Marcos Álvarez-Díaz, 2020. "Is it possible to accurately forecast the evolution of Brent crude oil prices? An answer based on parametric and nonparametric forecasting methods," Empirical Economics, Springer, vol. 59(3), pages 1285-1305, September.
    13. Jin, Xuejun & Zhu, Keer & Yang, Xiaolan & Wang, Shouyang, 2021. "Estimating the reaction of Bitcoin prices to the uncertainty of fiat currency," Research in International Business and Finance, Elsevier, vol. 58(C).
    14. Zhang, Jin-Liang & Zhang, Yue-Jun & Zhang, Lu, 2015. "A novel hybrid method for crude oil price forecasting," Energy Economics, Elsevier, vol. 49(C), pages 649-659.
    15. Xiong, Tao & Bao, Yukun & Hu, Zhongyi, 2013. "Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices," Energy Economics, Elsevier, vol. 40(C), pages 405-415.
    16. Yulian Zhang & Shigeyuki Hamori, 2020. "Forecasting Crude Oil Market Crashes Using Machine Learning Technologies," Energies, MDPI, vol. 13(10), pages 1-14, May.
    17. Chevillon, Guillaume & Rifflart, Christine, 2009. "Physical market determinants of the price of crude oil and the market premium," Energy Economics, Elsevier, vol. 31(4), pages 537-549, July.
    18. Lin, Ling & Jiang, Yong & Xiao, Helu & Zhou, Zhongbao, 2020. "Crude oil price forecasting based on a novel hybrid long memory GARCH-M and wavelet analysis model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 543(C).
    19. Matteo Manera & Chiara Longo & Anil Markandya & Elisa Scarpa, 2007. "Evaluating the Empirical Performance of Alternative Econometric Models for Oil Price Forecasting," Working Papers 2007.4, Fondazione Eni Enrico Mattei.
    20. Bangzhu Zhu & Shujiao Ma & Rui Xie & Julien Chevallier & Yi-Ming Wei, 2018. "Hilbert Spectra and Empirical Mode Decomposition: A Multiscale Event Analysis Method to Detect the Impact of Economic Crises on the European Carbon Market," Computational Economics, Springer;Society for Computational Economics, vol. 52(1), pages 105-121, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:31:y:2009:i:5:p:768-778. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.