IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v230y2018icp207-219.html
   My bibliography  Save this article

The effects of flue-wall design modifications on combustion and flow characteristics of an aluminum anode baking furnace-CFD modeling

Author

Listed:
  • Tajik, Abdul Raouf
  • Shamim, Tariq
  • Zaidani, Mouna
  • Abu Al-Rub, Rashid K.

Abstract

A modern aluminum smelter has a capacity of 1–2 million tons of aluminum per annum which requires more than 0.5–1.0 million tons of heat treated (baked) carbon anodes per year. The anode baking process is very energy intensive, approximately requires 2 GJ of energy per ton of carbon anodes which will be approximately 1–2 million GJ of energy per year. Since the plant testing is very expensive, anode baking furnace modeling is imperative to investigate the effects of different operational and geometrical parameters on the furnace energy consumption.

Suggested Citation

  • Tajik, Abdul Raouf & Shamim, Tariq & Zaidani, Mouna & Abu Al-Rub, Rashid K., 2018. "The effects of flue-wall design modifications on combustion and flow characteristics of an aluminum anode baking furnace-CFD modeling," Applied Energy, Elsevier, vol. 230(C), pages 207-219.
  • Handle: RePEc:eee:appene:v:230:y:2018:i:c:p:207-219
    DOI: 10.1016/j.apenergy.2018.08.078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918312261
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.08.078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oh, Jeongseog & Noh, Dongsoon & Ko, Changbok, 2013. "The effect of hydrogen addition on the flame behavior of a non-premixed oxy-methane jet in a lab-scale furnace," Energy, Elsevier, vol. 62(C), pages 362-369.
    2. Choy, Y.S. & Zhen, H.S. & Leung, C.W. & Li, H.B., 2012. "Pollutant emission and noise radiation from open and impinging inverse diffusion flames," Applied Energy, Elsevier, vol. 91(1), pages 82-89.
    3. Oh, Jeongseog & Noh, Dongsoon & Lee, Eungyeong, 2013. "The effect of CO addition on the flame behavior of a non-premixed oxy-methane jet in a lab-scale furnace," Applied Energy, Elsevier, vol. 112(C), pages 350-357.
    4. Ramadan, Islam A. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Rashwan, Sherif S. & Nemitallah, Medhat A. & Habib, Mohamed A., 2016. "Effects of oxidizer flexibility and bluff-body blockage ratio on flammability limits of diffusion flames," Applied Energy, Elsevier, vol. 178(C), pages 19-28.
    5. Li, Sen & Wei, Xiaolin & Yu, Linxin, 2011. "Numerical study on NOx/CO emissions in the diffusion flames of high-temperature off-gas of steelmaking converter," Applied Energy, Elsevier, vol. 88(4), pages 1113-1119, April.
    6. Gövert, S. & Mira, D. & Kok, J.B.W. & Vázquez, M. & Houzeaux, G., 2015. "Turbulent combustion modelling of a confined premixed jet flame including heat loss effects using tabulated chemistry," Applied Energy, Elsevier, vol. 156(C), pages 804-815.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zaidani, Mouna & Tajik, Abdul Raouf & Qureshi, Zahid Ahmed & Shamim, Tariq & Abu Al-Rub, Rashid K., 2018. "Investigating the flue-wall deformation effects on performance characteristics of an open-top aluminum anode baking furnace," Applied Energy, Elsevier, vol. 231(C), pages 1033-1049.
    2. Aminmahalati, Alireza & Fazlali, Alireza & Safikhani, Hamed, 2021. "Multi-objective optimization of CO boiler combustion chamber in the RFCC unit using NSGA II algorithm," Energy, Elsevier, vol. 221(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zaidani, Mouna & Tajik, Abdul Raouf & Qureshi, Zahid Ahmed & Shamim, Tariq & Abu Al-Rub, Rashid K., 2018. "Investigating the flue-wall deformation effects on performance characteristics of an open-top aluminum anode baking furnace," Applied Energy, Elsevier, vol. 231(C), pages 1033-1049.
    2. Wang, Qiang & Tang, Fei & Zhou, Zheng & Liu, Huan & Palacios, Adriana, 2017. "Flame height of axisymmetric gaseous fuel jets restricted by parallel sidewalls: Experiments and theoretical analysis," Applied Energy, Elsevier, vol. 208(C), pages 1519-1526.
    3. Hussain, Muzafar & Abdelhafez, Ahmed & Nemitallah, Medhat A. & Araoye, Abdulrazaq A. & Ben-Mansour, Rached & Habib, Mohamed A., 2020. "A highly diluted oxy-fuel micromixer combustor with hydrogen enrichment for enhancing turndown in gas turbines," Applied Energy, Elsevier, vol. 279(C).
    4. Abdelhafez, Ahmed & Rashwan, Sherif S. & Nemitallah, Medhat A. & Habib, Mohamed A., 2018. "Stability map and shape of premixed CH4/O2/CO2 flames in a model gas-turbine combustor," Applied Energy, Elsevier, vol. 215(C), pages 63-74.
    5. Wan, Huaxian & Gao, Zihe & Ji, Jie & Zhang, Yongming & Li, Kaiyuan, 2018. "Experimental and theoretical study on flame front temperatures within ceiling jets from turbulent diffusion flames of n-heptane fuel," Energy, Elsevier, vol. 164(C), pages 79-86.
    6. Choi, Sun & Lee, Seungro & Kwon, Oh Chae, 2015. "Extinction limits and structure of counterflow nonpremixed hydrogen-doped ammonia/air flames at elevated temperatures," Energy, Elsevier, vol. 85(C), pages 503-510.
    7. Ramadan, Islam A. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Rashwan, Sherif S. & Nemitallah, Medhat A. & Habib, Mohamed A., 2016. "Effects of oxidizer flexibility and bluff-body blockage ratio on flammability limits of diffusion flames," Applied Energy, Elsevier, vol. 178(C), pages 19-28.
    8. Oh, Jeongseog & Noh, Dongsoon, 2015. "Flame characteristics of a non-premixed oxy-fuel jet in a lab-scale furnace," Energy, Elsevier, vol. 81(C), pages 328-343.
    9. Choi, Sun & Kim, Tae Young & Kim, Hee Kyung & Koo, Jaye & Kim, Jeong Soo & Kwon, Oh Chae, 2015. "Properties of inverse nonpremixed pure O2/CH4 coflow flames in a model combustor," Energy, Elsevier, vol. 93(P1), pages 1105-1115.
    10. Zhang, Xiaolei & Hu, Longhua & Delichatsios, Michael A. & Zhang, Jianping, 2019. "Experimental study on flame morphologic characteristics of wall attached non-premixed buoyancy driven turbulent flames," Applied Energy, Elsevier, vol. 254(C).
    11. Rashwan, Sherif S. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Nemitallah, Medhat A. & Habib, Mohamed A., 2017. "Experimental study of atmospheric partially premixed oxy-combustion flames anchored over a perforated plate burner," Energy, Elsevier, vol. 122(C), pages 159-167.
    12. Lazaroiu, Gheorghe & Pop, Elena & Negreanu, Gabriel & Pisa, Ionel & Mihaescu, Lucian & Bondrea, Andreya & Berbece, Viorel, 2017. "Biomass combustion with hydrogen injection for energy applications," Energy, Elsevier, vol. 127(C), pages 351-357.
    13. Rashwan, Sherif S. & Mohany, Atef & Dincer, Ibrahim, 2020. "Investigation of self-induced thermoacoustic instabilities in gas turbine combustors," Energy, Elsevier, vol. 190(C).
    14. Shang, Fengju & Hu, Longhua & Sun, Xiepeng & Wang, Qiang & Palacios, Adriana, 2017. "Flame downwash length evolution of non-premixed gaseous fuel jets in cross-flow: Experiments and a new correlation," Applied Energy, Elsevier, vol. 198(C), pages 99-107.
    15. Gao, Wei & Yan, Yunfei & Shen, Kaiming & Huang, Lujing & Zhao, Ting & Gao, Bo, 2022. "Combustion characteristic of premixed H2/air in the micro cavity combustor with guide vanes," Energy, Elsevier, vol. 239(PA).
    16. Li, Hong-Meng & Li, Guo-Xiu & Jiang, Yan-Huan & Li, Lei & Li, Fu-Sheng, 2018. "Flame stability and propagation characteristics for combustion in air for an equimolar mixture of hydrogen and carbon monoxide in turbulent conditions," Energy, Elsevier, vol. 157(C), pages 76-86.
    17. Wen, Xu & Luo, Kun & Luo, Yujuan & Kassem, Hassan I. & Jin, Hanhui & Fan, Jianren, 2016. "Large eddy simulation of a semi-industrial scale coal furnace using non-adiabatic three-stream flamelet/progress variable model," Applied Energy, Elsevier, vol. 183(C), pages 1086-1097.
    18. Tang, Fei & Hu, Peng & Shi, Congling, 2021. "Ceiling thermal impingement spread characteristics induced by wall-attached fires under various sub-atmospheric pressures," Energy, Elsevier, vol. 215(PB).
    19. Stanislav Anatolyev & Renat Khabibullin & Artem Prokhorov, 2012. "Reconstructing high dimensional dynamic distributions from distributions of lower dimension," Working Papers 12003, Concordia University, Department of Economics.
    20. Gao, Zihe & Wan, Huaxian & Ji, Jie & Bi, Yubo, 2019. "Experimental prediction on the performance and propagation of ceiling jets under the influence of wall confinement," Energy, Elsevier, vol. 178(C), pages 378-385.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:230:y:2018:i:c:p:207-219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.