IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v308y2024ics0360544224028007.html
   My bibliography  Save this article

Chemical effect of H2 on NH3 combustion in an O2 environment via molecular dynamics simulations

Author

Listed:
  • Li, Yunlong
  • Feng, Lai
  • Chen, Wei

Abstract

Due to the imperative to reduce carbon emissions, NH3-H2 mixed combustion has garnered significant attention. However, the knowledge of the reaction kinetics of NH3-H2-O2 mixtures at the molecular level remains limited. In this paper, the reactive force-field (ReaxFF) method was employed to study the microscale reaction kinetics of the NH3-H2-O2 mixture with varying hydrogen ratios (HR). The results of the microcanonical ensemble simulations indicated that the addition of H2 significantly increased the combustion performance of NH3. However, H2 did not change the two primary reaction paths of NH3 oxidation (NH3 → N2H2 → N2 and NH3 → NO → N2). The addition H2 not only led to a shift in the initiation reactions from NH3-O2 to H2-O2 reactions, but also notably enhanced the concentration of HO2 and OH radicals (e.g., O2 + H2 → HO2 + H), which accelerated the extraction of H from NxHy and subsequently facilitated the immediate formation of N2. Furthermore, the ignition delay decreased from 120 ps to 40 ps, and the activation energies decreased from 295.46 kJ/mol to 162.12 kJ/mol as HR increased from 0 to 0.3 under the equivalence ratio of 0.4. These key findings can guide the development of clean NH₃ combustion technology.

Suggested Citation

  • Li, Yunlong & Feng, Lai & Chen, Wei, 2024. "Chemical effect of H2 on NH3 combustion in an O2 environment via molecular dynamics simulations," Energy, Elsevier, vol. 308(C).
  • Handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224028007
    DOI: 10.1016/j.energy.2024.133026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224028007
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224028007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.