IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v84y2015icp1-14.html
   My bibliography  Save this article

Optimal design of power system stabilizer for power systems including doubly fed induction generator wind turbines

Author

Listed:
  • Derafshian, Mehdi
  • Amjady, Nima

Abstract

This paper presents an evolutionary algorithm-based approach for optimal design of power system stabilizer (PSS) for multi-machine power systems that include doubly fed induction generator wind turbines. The proposed evolutionary algorithm is an improved particle swarm optimization named chaotic particle swarm optimization with passive congregation (CPSO-PC) applied for finding the optimal settings of PSS parameters. Two different eigenvalue-based objectives are combined as the objective function for the optimization problem of tuning PSS parameters. The first objective function comprises the damping factor of lightly damped electro-mechanical modes and the second one includes the damping ratio of these modes. The effectiveness of the proposed method to design PSS for the power systems including DFIG (Doubly Fed Induction Generator) is extensively demonstrated through eigenvalue analysis and time-domain simulations and also by comparing its simulation results with the results of other heuristic optimization approaches.

Suggested Citation

  • Derafshian, Mehdi & Amjady, Nima, 2015. "Optimal design of power system stabilizer for power systems including doubly fed induction generator wind turbines," Energy, Elsevier, vol. 84(C), pages 1-14.
  • Handle: RePEc:eee:energy:v:84:y:2015:i:c:p:1-14
    DOI: 10.1016/j.energy.2015.01.115
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215002510
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.01.115?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fernandez, L.M. & Garcia, C.A. & Jurado, F., 2008. "Comparative study on the performance of control systems for doubly fed induction generator (DFIG) wind turbines operating with power regulation," Energy, Elsevier, vol. 33(9), pages 1438-1452.
    2. Menegaki, Angeliki N., 2013. "Accounting for unobserved management in renewable energy & growth," Energy, Elsevier, vol. 63(C), pages 345-355.
    3. Pican, E. & Omerdic, E. & Toal, D. & Leahy, M., 2011. "Analysis of parallel connected synchronous generators in a novel offshore wind farm model," Energy, Elsevier, vol. 36(11), pages 6387-6397.
    4. Surinkaew, Tossaporn & Ngamroo, Issarachai, 2014. "Robust power oscillation damper design for DFIG-based wind turbine based on specified structure mixed H2/H∞ control," Renewable Energy, Elsevier, vol. 66(C), pages 15-24.
    5. Sawetsakulanond, B. & Kinnares, V., 2010. "Design, analysis, and construction of a small scale self-excited induction generator for a wind energy application," Energy, Elsevier, vol. 35(12), pages 4975-4985.
    6. Pichan, Mohammad & Rastegar, Hasan & Monfared, Mohammad, 2013. "Two fuzzy-based direct power control strategies for doubly-fed induction generators in wind energy conversion systems," Energy, Elsevier, vol. 51(C), pages 154-162.
    7. Rohani, Golbarg & Nour, Mutasim, 2014. "Techno-economical analysis of stand-alone hybrid renewable power system for Ras Musherib in United Arab Emirates," Energy, Elsevier, vol. 64(C), pages 828-841.
    8. Saheb-Koussa, Djohra & Haddadi, Mourad & Belhamel, Maiouf & Hadji, Seddik & Nouredine, Said, 2010. "Modeling and simulation of the fixed-speed WECS (wind energy conversion system): Application to the Algerian Sahara area," Energy, Elsevier, vol. 35(10), pages 4116-4125.
    9. Lin, Whei-Min & Hong, Chih-Ming & Cheng, Fu-Sheng, 2010. "On-line designed hybrid controller with adaptive observer for variable-speed wind generation system," Energy, Elsevier, vol. 35(7), pages 3022-3030.
    10. Aman, M.M. & Jasmon, G.B. & Bakar, A.H.A. & Mokhlis, H., 2014. "A new approach for optimum simultaneous multi-DG distributed generation Units placement and sizing based on maximization of system loadability using HPSO (hybrid particle swarm optimization) algorithm," Energy, Elsevier, vol. 66(C), pages 202-215.
    11. Kusiak, Andrew & Zheng, Haiyang, 2010. "Optimization of wind turbine energy and power factor with an evolutionary computation algorithm," Energy, Elsevier, vol. 35(3), pages 1324-1332.
    12. Lin, Whei-Min & Hong, Chih-Ming, 2010. "Intelligent approach to maximum power point tracking control strategy for variable-speed wind turbine generation system," Energy, Elsevier, vol. 35(6), pages 2440-2447.
    13. Hachicha, Fatma & Krichen, Lotfi, 2012. "Rotor power control in doubly fed induction generator wind turbine under grid faults," Energy, Elsevier, vol. 44(1), pages 853-861.
    14. Petković, Dalibor & Ćojbašić, Žarko & Nikolić, Vlastimir & Shamshirband, Shahaboddin & Mat Kiah, Miss Laiha & Anuar, Nor Badrul & Abdul Wahab, Ainuddin Wahid, 2014. "Adaptive neuro-fuzzy maximal power extraction of wind turbine with continuously variable transmission," Energy, Elsevier, vol. 64(C), pages 868-874.
    15. Pouresmaeil, Edris & Gomis-Bellmunt, Oriol & Montesinos-Miracle, Daniel & Bergas-Jané, Joan, 2011. "Multilevel converters control for renewable energy integration to the power grid," Energy, Elsevier, vol. 36(2), pages 950-963.
    16. Seixas, M. & Melício, R. & Mendes, V.M.F., 2014. "Offshore wind turbine simulation: Multibody drive train. Back-to-back NPC (neutral point clamped) converters. Fractional-order control," Energy, Elsevier, vol. 69(C), pages 357-369.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehrasa, Majid & Pouresmaeil, Edris & Zabihi, Sasan & Rodrigues, Eduardo M.G. & Catalão, João P.S., 2016. "A control strategy for the stable operation of shunt active power filters in power grids," Energy, Elsevier, vol. 96(C), pages 325-334.
    2. El-Kharashi, Eyhab & Farid, Azmy Wadie, 2015. "Accurate assessment of the output energy from the doubly fed induction generators," Energy, Elsevier, vol. 93(P1), pages 406-415.
    3. Humberto Verdejo & Rodrigo Torres & Victor Pino & Wolfgang Kliemann & Cristhian Becker & José Delpiano, 2019. "Tuning of Controllers in Power Systems Using a Heuristic-Stochastic Approach," Energies, MDPI, vol. 12(12), pages 1-25, June.
    4. Zhang, Guozhou & Hu, Weihao & Cao, Di & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2021. "A novel deep reinforcement learning enabled sparsity promoting adaptive control method to improve the stability of power systems with wind energy penetration," Renewable Energy, Elsevier, vol. 178(C), pages 363-376.
    5. Debouza, Mahdi & Al-Durra, Ahmed & Errouissi, Rachid & Muyeen, S.M., 2018. "Direct power control for grid-connected doubly fed induction generator using disturbance observer based control," Renewable Energy, Elsevier, vol. 125(C), pages 365-372.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seixas, M. & Melício, R. & Mendes, V.M.F., 2014. "Offshore wind turbine simulation: Multibody drive train. Back-to-back NPC (neutral point clamped) converters. Fractional-order control," Energy, Elsevier, vol. 69(C), pages 357-369.
    2. Song, Zhanfeng & Shi, Tingna & Xia, Changliang & Chen, Wei, 2012. "A novel adaptive control scheme for dynamic performance improvement of DFIG-Based wind turbines," Energy, Elsevier, vol. 38(1), pages 104-117.
    3. Melício, R. & Mendes, V.M.F. & Catalão, J.P.S., 2011. "Comparative study of power converter topologies and control strategies for the harmonic performance of variable-speed wind turbine generator systems," Energy, Elsevier, vol. 36(1), pages 520-529.
    4. Radičević, Branko M. & Savić, Milan S. & Madsen, Søren Find & Badea, Ion, 2012. "Impact of wind turbine blade rotation on the lightning strike incidence – A theoretical and experimental study using a reduced-size model," Energy, Elsevier, vol. 45(1), pages 644-654.
    5. Moradi, Hamed & Vossoughi, Gholamreza, 2015. "Robust control of the variable speed wind turbines in the presence of uncertainties: A comparison between H∞ and PID controllers," Energy, Elsevier, vol. 90(P2), pages 1508-1521.
    6. Pichan, Mohammad & Rastegar, Hasan & Monfared, Mohammad, 2013. "Two fuzzy-based direct power control strategies for doubly-fed induction generators in wind energy conversion systems," Energy, Elsevier, vol. 51(C), pages 154-162.
    7. Chatterjee, Arunava & Roy, Krishna & Chatterjee, Debashis, 2014. "A Gravitational Search Algorithm (GSA) based Photo-Voltaic (PV) excitation control strategy for single phase operation of three phase wind-turbine coupled induction generator," Energy, Elsevier, vol. 74(C), pages 707-718.
    8. Saheb-Koussa, Djohra & Haddadi, Mourad & Belhamel, Maiouf & Hadji, Seddik & Nouredine, Said, 2010. "Modeling and simulation of the fixed-speed WECS (wind energy conversion system): Application to the Algerian Sahara area," Energy, Elsevier, vol. 35(10), pages 4116-4125.
    9. Fodor, Attila & Magyar, Attila & Hangos, Katalin M., 2012. "Control-oriented modeling of the energy-production of a synchronous generator in a nuclear power plant," Energy, Elsevier, vol. 39(1), pages 135-145.
    10. Phan, Dinh-Chung & Yamamoto, Shigeru, 2016. "Rotor speed control of doubly fed induction generator wind turbines using adaptive maximum power point tracking," Energy, Elsevier, vol. 111(C), pages 377-388.
    11. Hachicha, Fatma & Krichen, Lotfi, 2012. "Rotor power control in doubly fed induction generator wind turbine under grid faults," Energy, Elsevier, vol. 44(1), pages 853-861.
    12. Dargahi, Vahid & Sadigh, Arash Khoshkbar & Pahlavani, Mohammad Reza Alizadeh & Shoulaie, Abbas, 2012. "DC (direct current) voltage source reduction in stacked multicell converter based energy systems," Energy, Elsevier, vol. 46(1), pages 649-663.
    13. Shrabani Sahu & Sasmita Behera, 2022. "A review on modern control applications in wind energy conversion system," Energy & Environment, , vol. 33(2), pages 223-262, March.
    14. Li, Yan & Dong, Yuxing & Zhang, Qiang & Cao, Lihua, 2014. "Design, analysis and implementation of a constant-voltage power generation system based on a novel memory machine," Energy, Elsevier, vol. 76(C), pages 875-883.
    15. Suganthi, L. & Iniyan, S. & Samuel, Anand A., 2015. "Applications of fuzzy logic in renewable energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 585-607.
    16. Yang, Jian & Song, Dongran & Dong, Mi & Chen, Sifan & Zou, Libing & Guerrero, Josep M., 2016. "Comparative studies on control systems for a two-blade variable-speed wind turbine with a speed exclusion zone," Energy, Elsevier, vol. 109(C), pages 294-309.
    17. de Prada Gil, Mikel & Gomis-Bellmunt, Oriol & Sumper, Andreas & Bergas-Jané, Joan, 2012. "Power generation efficiency analysis of offshore wind farms connected to a SLPC (single large power converter) operated with variable frequencies considering wake effects," Energy, Elsevier, vol. 37(1), pages 455-468.
    18. Ramli, Makbul A.M. & Hiendro, Ayong & Al-Turki, Yusuf A., 2016. "Techno-economic energy analysis of wind/solar hybrid system: Case study for western coastal area of Saudi Arabia," Renewable Energy, Elsevier, vol. 91(C), pages 374-385.
    19. Yin, Xiu-xing & Lin, Yong-gang & Li, Wei & Gu, Hai-gang, 2016. "Hydro-viscous transmission based maximum power extraction control for continuously variable speed wind turbine with enhanced efficiency," Renewable Energy, Elsevier, vol. 87(P1), pages 646-655.
    20. Ganjefar, Soheil & Mohammadi, Ali, 2016. "Variable speed wind turbines with maximum power extraction using singular perturbation theory," Energy, Elsevier, vol. 106(C), pages 510-519.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:84:y:2015:i:c:p:1-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.