IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v38y2012i1p104-117.html
   My bibliography  Save this article

A novel adaptive control scheme for dynamic performance improvement of DFIG-Based wind turbines

Author

Listed:
  • Song, Zhanfeng
  • Shi, Tingna
  • Xia, Changliang
  • Chen, Wei

Abstract

A novel adaptive current controller for DFIG-based wind turbines is introduced in this paper. The attractiveness of the proposed strategy results from its ability to actively estimate and actively compensate for the plant dynamics and external disturbances in real time. Thus, the control strategy can successfully drive the rotor current to track the reference value, ensuring that the performance degradation caused by grid disturbances, cross-coupling terms and parameter uncertainties can be successfully suppressed. Besides, the two-parameter tuning feature makes the control strategy practical and easy to implement in commercial wind turbines. To quantify the controller performances, the transfer function description of the controller is derived. General disturbance rejection, robustness against parameter uncertainties, bandwidth and stability are also addressed. Simulation results, together with the time-domain responses, proved the stability and the strong robustness of the control system against parameter uncertainties and grid disturbances. Significant tracking and disturbance rejection performances are achieved.

Suggested Citation

  • Song, Zhanfeng & Shi, Tingna & Xia, Changliang & Chen, Wei, 2012. "A novel adaptive control scheme for dynamic performance improvement of DFIG-Based wind turbines," Energy, Elsevier, vol. 38(1), pages 104-117.
  • Handle: RePEc:eee:energy:v:38:y:2012:i:1:p:104-117
    DOI: 10.1016/j.energy.2011.12.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211008541
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.12.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hocine, Labar & Mounira, Mekki, 2011. "Effect of nonlinear energy on wind farm generators connected to a distribution grid," Energy, Elsevier, vol. 36(5), pages 3255-3261.
    2. Lin, Whei-Min & Hong, Chih-Ming & Cheng, Fu-Sheng, 2010. "Fuzzy neural network output maximization control for sensorless wind energy conversion system," Energy, Elsevier, vol. 35(2), pages 592-601.
    3. Liu, Heping & Shi, Jing & Erdem, Ergin, 2010. "Prediction of wind speed time series using modified Taylor Kriging method," Energy, Elsevier, vol. 35(12), pages 4870-4879.
    4. Sawetsakulanond, B. & Kinnares, V., 2010. "Design, analysis, and construction of a small scale self-excited induction generator for a wind energy application," Energy, Elsevier, vol. 35(12), pages 4975-4985.
    5. Saheb-Koussa, Djohra & Haddadi, Mourad & Belhamel, Maiouf & Hadji, Seddik & Nouredine, Said, 2010. "Modeling and simulation of the fixed-speed WECS (wind energy conversion system): Application to the Algerian Sahara area," Energy, Elsevier, vol. 35(10), pages 4116-4125.
    6. Rosen, Johannes & Tietze-Stöckinger, Ingela & Rentz, Otto, 2007. "Model-based analysis of effects from large-scale wind power production," Energy, Elsevier, vol. 32(4), pages 575-583.
    7. Mabel, M. Carolin & Raj, R. Edwin & Fernandez, E., 2010. "Adequacy evaluation of wind power generation systems," Energy, Elsevier, vol. 35(12), pages 5217-5222.
    8. Lin, Whei-Min & Hong, Chih-Ming & Cheng, Fu-Sheng, 2010. "On-line designed hybrid controller with adaptive observer for variable-speed wind generation system," Energy, Elsevier, vol. 35(7), pages 3022-3030.
    9. Ozbek, Muammer & Rixen, Daniel J. & Erne, Oliver & Sanow, Gunter, 2010. "Feasibility of monitoring large wind turbines using photogrammetry," Energy, Elsevier, vol. 35(12), pages 4802-4811.
    10. Song, Zhanfeng & Xia, Changliang & Shi, Tingna, 2010. "Assessing transient response of DFIG based wind turbines during voltage dips regarding main flux saturation and rotor deep-bar effect," Applied Energy, Elsevier, vol. 87(10), pages 3283-3293, October.
    11. Kusiak, Andrew & Zheng, Haiyang, 2010. "Optimization of wind turbine energy and power factor with an evolutionary computation algorithm," Energy, Elsevier, vol. 35(3), pages 1324-1332.
    12. Lin, Whei-Min & Hong, Chih-Ming, 2010. "Intelligent approach to maximum power point tracking control strategy for variable-speed wind turbine generation system," Energy, Elsevier, vol. 35(6), pages 2440-2447.
    13. Yurdusev, M.A. & Ata, R. & Çetin, N.S., 2006. "Assessment of optimum tip speed ratio in wind turbines using artificial neural networks," Energy, Elsevier, vol. 31(12), pages 2153-2161.
    14. Shen, Xin & Zhu, Xiaocheng & Du, Zhaohui, 2011. "Wind turbine aerodynamics and loads control in wind shear flow," Energy, Elsevier, vol. 36(3), pages 1424-1434.
    15. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "Modelling the existing Irish energy-system to identify future energy costs and the maximum wind penetration feasible," Energy, Elsevier, vol. 35(5), pages 2164-2173.
    16. Kamel, Rashad M. & Chaouachi, Aymen & Nagasaka, Ken, 2010. "Wind power smoothing using fuzzy logic pitch controller and energy capacitor system for improvement Micro-Grid performance in islanding mode," Energy, Elsevier, vol. 35(5), pages 2119-2129.
    17. Melício, R. & Mendes, V.M.F. & Catalão, J.P.S., 2011. "Comparative study of power converter topologies and control strategies for the harmonic performance of variable-speed wind turbine generator systems," Energy, Elsevier, vol. 36(1), pages 520-529.
    18. Lanzafame, R. & Messina, M., 2010. "Power curve control in micro wind turbine design," Energy, Elsevier, vol. 35(2), pages 556-561.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Howlader, Abdul Motin & Izumi, Yuya & Uehara, Akie & Urasaki, Naomitsu & Senjyu, Tomonobu & Yona, Atsushi & Saber, Ahmed Yousuf, 2012. "A minimal order observer based frequency control strategy for an integrated wind-battery-diesel power system," Energy, Elsevier, vol. 46(1), pages 168-178.
    2. Kusiak, Andrew & Zhang, Zijun & Verma, Anoop, 2013. "Prediction, operations, and condition monitoring in wind energy," Energy, Elsevier, vol. 60(C), pages 1-12.
    3. Moradi, Hamed & Vossoughi, Gholamreza, 2015. "Robust control of the variable speed wind turbines in the presence of uncertainties: A comparison between H∞ and PID controllers," Energy, Elsevier, vol. 90(P2), pages 1508-1521.
    4. Taveiros, F.E.V. & Barros, L.S. & Costa, F.B., 2015. "Back-to-back converter state-feedback control of DFIG (doubly-fed induction generator)-based wind turbines," Energy, Elsevier, vol. 89(C), pages 896-906.
    5. Mohd Zin, Abdullah Asuhaimi B. & Pesaran H.A., Mahmoud & Khairuddin, Azhar B. & Jahanshaloo, Leila & Shariati, Omid, 2013. "An overview on doubly fed induction generators′ controls and contributions to wind based electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 692-708.
    6. Pichan, Mohammad & Rastegar, Hasan & Monfared, Mohammad, 2013. "Two fuzzy-based direct power control strategies for doubly-fed induction generators in wind energy conversion systems," Energy, Elsevier, vol. 51(C), pages 154-162.
    7. Xie, Wei & Zeng, Pan & Lei, Liping, 2015. "Wind tunnel experiments for innovative pitch regulated blade of horizontal axis wind turbine," Energy, Elsevier, vol. 91(C), pages 1070-1080.
    8. Ren, Lina & Mao, Chenhong & Song, Zeyu & Liu, Fucai, 2019. "Study on active disturbance rejection control with actuator saturation to reduce the load of a driving chain in wind turbines," Renewable Energy, Elsevier, vol. 133(C), pages 268-274.
    9. Belmokhtar, K. & Doumbia, M.L. & Agbossou, K., 2014. "Novel fuzzy logic based sensorless maximum power point tracking strategy for wind turbine systems driven DFIG (doubly-fed induction generator)," Energy, Elsevier, vol. 76(C), pages 679-693.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Derafshian, Mehdi & Amjady, Nima, 2015. "Optimal design of power system stabilizer for power systems including doubly fed induction generator wind turbines," Energy, Elsevier, vol. 84(C), pages 1-14.
    2. Radičević, Branko M. & Savić, Milan S. & Madsen, Søren Find & Badea, Ion, 2012. "Impact of wind turbine blade rotation on the lightning strike incidence – A theoretical and experimental study using a reduced-size model," Energy, Elsevier, vol. 45(1), pages 644-654.
    3. Pichan, Mohammad & Rastegar, Hasan & Monfared, Mohammad, 2013. "Two fuzzy-based direct power control strategies for doubly-fed induction generators in wind energy conversion systems," Energy, Elsevier, vol. 51(C), pages 154-162.
    4. Imraan, Mustahib & Sharma, Rajnish N. & Flay, Richard G.J., 2013. "Wind tunnel testing of a wind turbine with telescopic blades: The influence of blade extension," Energy, Elsevier, vol. 53(C), pages 22-32.
    5. Kusiak, Andrew & Zhang, Zijun & Verma, Anoop, 2013. "Prediction, operations, and condition monitoring in wind energy," Energy, Elsevier, vol. 60(C), pages 1-12.
    6. Melício, R. & Mendes, V.M.F. & Catalão, J.P.S., 2011. "Comparative study of power converter topologies and control strategies for the harmonic performance of variable-speed wind turbine generator systems," Energy, Elsevier, vol. 36(1), pages 520-529.
    7. Yu, Jie & Chen, Kuilin & Mori, Junichi & Rashid, Mudassir M., 2013. "A Gaussian mixture copula model based localized Gaussian process regression approach for long-term wind speed prediction," Energy, Elsevier, vol. 61(C), pages 673-686.
    8. de Prada Gil, Mikel & Gomis-Bellmunt, Oriol & Sumper, Andreas & Bergas-Jané, Joan, 2011. "Analysis of a multi turbine offshore wind farm connected to a single large power converter operated with variable frequency," Energy, Elsevier, vol. 36(5), pages 3272-3281.
    9. de Prada Gil, Mikel & Gomis-Bellmunt, Oriol & Sumper, Andreas & Bergas-Jané, Joan, 2012. "Power generation efficiency analysis of offshore wind farms connected to a SLPC (single large power converter) operated with variable frequencies considering wake effects," Energy, Elsevier, vol. 37(1), pages 455-468.
    10. Allaei, Daryoush & Andreopoulos, Yiannis, 2014. "INVELOX: Description of a new concept in wind power and its performance evaluation," Energy, Elsevier, vol. 69(C), pages 336-344.
    11. Moradi, Hamed & Vossoughi, Gholamreza, 2015. "Robust control of the variable speed wind turbines in the presence of uncertainties: A comparison between H∞ and PID controllers," Energy, Elsevier, vol. 90(P2), pages 1508-1521.
    12. Lin, Whei-Min & Hong, Chih-Ming & Cheng, Fu-Sheng, 2010. "On-line designed hybrid controller with adaptive observer for variable-speed wind generation system," Energy, Elsevier, vol. 35(7), pages 3022-3030.
    13. Ganjefar, Soheil & Ghassemi, Ali Akbar & Ahmadi, Mohamad Mehdi, 2014. "Improving efficiency of two-type maximum power point tracking methods of tip-speed ratio and optimum torque in wind turbine system using a quantum neural network," Energy, Elsevier, vol. 67(C), pages 444-453.
    14. Mohamed Thameem Ansari, M. & Velusami, S., 2010. "DMLHFLC (Dual mode linguistic hedge fuzzy logic controller) for an isolated wind–diesel hybrid power system with BES (battery energy storage) unit," Energy, Elsevier, vol. 35(9), pages 3827-3837.
    15. Dargahi, Vahid & Sadigh, Arash Khoshkbar & Pahlavani, Mohammad Reza Alizadeh & Shoulaie, Abbas, 2012. "DC (direct current) voltage source reduction in stacked multicell converter based energy systems," Energy, Elsevier, vol. 46(1), pages 649-663.
    16. Seixas, M. & Melício, R. & Mendes, V.M.F., 2014. "Offshore wind turbine simulation: Multibody drive train. Back-to-back NPC (neutral point clamped) converters. Fractional-order control," Energy, Elsevier, vol. 69(C), pages 357-369.
    17. Ganjefar, Soheil & Ghasemi, Ali Akbar, 2014. "A novel-strategy controller design for maximum power extraction in stand-alone windmill systems," Energy, Elsevier, vol. 76(C), pages 326-335.
    18. Shrabani Sahu & Sasmita Behera, 2022. "A review on modern control applications in wind energy conversion system," Energy & Environment, , vol. 33(2), pages 223-262, March.
    19. Mahela, Om Prakash & Shaik, Abdul Gafoor, 2016. "Comprehensive overview of grid interfaced wind energy generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 260-281.
    20. Suganthi, L. & Iniyan, S. & Samuel, Anand A., 2015. "Applications of fuzzy logic in renewable energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 585-607.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:38:y:2012:i:1:p:104-117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.