IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v125y2018icp365-372.html
   My bibliography  Save this article

Direct power control for grid-connected doubly fed induction generator using disturbance observer based control

Author

Listed:
  • Debouza, Mahdi
  • Al-Durra, Ahmed
  • Errouissi, Rachid
  • Muyeen, S.M.

Abstract

A disturbance observer based control method for a grid-connected doubly fed induction generator is presented in this study. The proposed control method consists of a state-feedback controller and a disturbance observer (DO). The DO is used to compensate for model uncertainties with the aim of removing the steady-state error. The control objective consists of regulating the stator currents instead of the rotor currents in order to achieve direct control of the stator active and reactive powers. Such a control scheme removes the need for an exact knowledge of the machine parameters to achieve accurate control of the stator active and reactive powers. The main advantage of this control method is ensuring a good transient performance as per the controller design specifications, while guaranteeing zero steady-state error. Moreover, the proposed control method was experimentally validated on a small scale DFIG setup.

Suggested Citation

  • Debouza, Mahdi & Al-Durra, Ahmed & Errouissi, Rachid & Muyeen, S.M., 2018. "Direct power control for grid-connected doubly fed induction generator using disturbance observer based control," Renewable Energy, Elsevier, vol. 125(C), pages 365-372.
  • Handle: RePEc:eee:renene:v:125:y:2018:i:c:p:365-372
    DOI: 10.1016/j.renene.2018.02.121
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118302738
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.02.121?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Derafshian, Mehdi & Amjady, Nima, 2015. "Optimal design of power system stabilizer for power systems including doubly fed induction generator wind turbines," Energy, Elsevier, vol. 84(C), pages 1-14.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaozhen Han & Ronglin Ma, 2019. "Adaptive-Gain Second-Order Sliding Mode Direct Power Control for Wind-Turbine-Driven DFIG under Balanced and Unbalanced Grid Voltage," Energies, MDPI, vol. 12(20), pages 1-18, October.
    2. Grover, Himanshu & Verma, Ashu & Bhatti, T.S., 2022. "DOBC-based frequency & voltage regulation strategy for PV-diesel hybrid microgrid during islanding conditions," Renewable Energy, Elsevier, vol. 196(C), pages 883-900.
    3. Mensou, Sara & Essadki, Ahmed & Nasser, Tamou & Idrissi, Badre Bououlid & Ben Tarla, Lahssan, 2020. "Dspace DS1104 implementation of a robust nonlinear controller applied for DFIG driven by wind turbine," Renewable Energy, Elsevier, vol. 147(P1), pages 1759-1771.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Humberto Verdejo & Rodrigo Torres & Victor Pino & Wolfgang Kliemann & Cristhian Becker & José Delpiano, 2019. "Tuning of Controllers in Power Systems Using a Heuristic-Stochastic Approach," Energies, MDPI, vol. 12(12), pages 1-25, June.
    2. El-Kharashi, Eyhab & Farid, Azmy Wadie, 2015. "Accurate assessment of the output energy from the doubly fed induction generators," Energy, Elsevier, vol. 93(P1), pages 406-415.
    3. Zhang, Guozhou & Hu, Weihao & Cao, Di & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2021. "A novel deep reinforcement learning enabled sparsity promoting adaptive control method to improve the stability of power systems with wind energy penetration," Renewable Energy, Elsevier, vol. 178(C), pages 363-376.
    4. Mehrasa, Majid & Pouresmaeil, Edris & Zabihi, Sasan & Rodrigues, Eduardo M.G. & Catalão, João P.S., 2016. "A control strategy for the stable operation of shunt active power filters in power grids," Energy, Elsevier, vol. 96(C), pages 325-334.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:125:y:2018:i:c:p:365-372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.