IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v51y2013icp154-162.html
   My bibliography  Save this article

Two fuzzy-based direct power control strategies for doubly-fed induction generators in wind energy conversion systems

Author

Listed:
  • Pichan, Mohammad
  • Rastegar, Hasan
  • Monfared, Mohammad

Abstract

This paper proposes two novel (direct power control) DPC strategies for a doubly fed induction generator (DFIG)-based wind energy conversion system based on a (fuzzy logic controller) FLC. At first, the mathematical model of the DFIG in the synchronous reference frame is derived. Then, based on this model, two novel FLC-based DPC strategies, called (fuzzy-based DPC) FDPC and (fully fuzzy-based DPC) FFDPC are proposed. In the FDPC, the required rotor voltages to eliminate power errors within each fixed sampling period are directly calculated based on the FLC, the measured active and reactive powers, the stator voltage and some machine parameters. On the other hand, in the FFDPC, the rotor voltages are directly calculated from the FLC. The control structures of proposed methods are very simple. Compared to the conventional switching table-based DPC, in the proposed methods, the hysteresis comparator and the switching table are replaced by a simple FLC and a PWM (pulse width modulation) modulator. The converter switching frequency is constant which simplifies the practical implementation. Also the proposed methods are robust against machine parameters mismatches and grid voltage disturbances. Extensive simulations in Matlab\Simulink are performed to confirm the effectiveness of the proposed methods under transient and steady state conditions.

Suggested Citation

  • Pichan, Mohammad & Rastegar, Hasan & Monfared, Mohammad, 2013. "Two fuzzy-based direct power control strategies for doubly-fed induction generators in wind energy conversion systems," Energy, Elsevier, vol. 51(C), pages 154-162.
  • Handle: RePEc:eee:energy:v:51:y:2013:i:c:p:154-162
    DOI: 10.1016/j.energy.2012.12.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213000248
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.12.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sawetsakulanond, B. & Kinnares, V., 2010. "Design, analysis, and construction of a small scale self-excited induction generator for a wind energy application," Energy, Elsevier, vol. 35(12), pages 4975-4985.
    2. Mabel, M. Carolin & Raj, R. Edwin & Fernandez, E., 2010. "Adequacy evaluation of wind power generation systems," Energy, Elsevier, vol. 35(12), pages 5217-5222.
    3. Fernandez, L.M. & Garcia, C.A. & Jurado, F., 2010. "Operating capability as a PQ/PV node of a direct-drive wind turbine based on a permanent magnet synchronous generator," Renewable Energy, Elsevier, vol. 35(6), pages 1308-1318.
    4. Kamel, Rashad M. & Chaouachi, Aymen & Nagasaka, Ken, 2010. "Wind power smoothing using fuzzy logic pitch controller and energy capacitor system for improvement Micro-Grid performance in islanding mode," Energy, Elsevier, vol. 35(5), pages 2119-2129.
    5. Fernandez, L.M. & Garcia, C.A. & Jurado, F., 2008. "Comparative study on the performance of control systems for doubly fed induction generator (DFIG) wind turbines operating with power regulation," Energy, Elsevier, vol. 33(9), pages 1438-1452.
    6. Lin, Whei-Min & Hong, Chih-Ming & Cheng, Fu-Sheng, 2010. "Fuzzy neural network output maximization control for sensorless wind energy conversion system," Energy, Elsevier, vol. 35(2), pages 592-601.
    7. Song, Zhanfeng & Shi, Tingna & Xia, Changliang & Chen, Wei, 2012. "A novel adaptive control scheme for dynamic performance improvement of DFIG-Based wind turbines," Energy, Elsevier, vol. 38(1), pages 104-117.
    8. Ozbek, Muammer & Rixen, Daniel J. & Erne, Oliver & Sanow, Gunter, 2010. "Feasibility of monitoring large wind turbines using photogrammetry," Energy, Elsevier, vol. 35(12), pages 4802-4811.
    9. Pouresmaeil, Edris & Gomis-Bellmunt, Oriol & Montesinos-Miracle, Daniel & Bergas-Jané, Joan, 2011. "Multilevel converters control for renewable energy integration to the power grid," Energy, Elsevier, vol. 36(2), pages 950-963.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Derafshian, Mehdi & Amjady, Nima, 2015. "Optimal design of power system stabilizer for power systems including doubly fed induction generator wind turbines," Energy, Elsevier, vol. 84(C), pages 1-14.
    2. Sarrias-Mena, Raúl & Fernández-Ramírez, Luis M. & García-Vázquez, Carlos Andrés & Jurado, Francisco, 2014. "Fuzzy logic based power management strategy of a multi-MW doubly-fed induction generator wind turbine with battery and ultracapacitor," Energy, Elsevier, vol. 70(C), pages 561-576.
    3. El-Kharashi, Eyhab, 2014. "Detailed comparative study regarding different formulae of predicting the iron losses in a machine excited by non-sinusoidal supply," Energy, Elsevier, vol. 73(C), pages 513-522.
    4. Chatterjee, Arunava & Roy, Krishna & Chatterjee, Debashis, 2014. "A Gravitational Search Algorithm (GSA) based Photo-Voltaic (PV) excitation control strategy for single phase operation of three phase wind-turbine coupled induction generator," Energy, Elsevier, vol. 74(C), pages 707-718.
    5. El-Kharashi, Eyhab & Farid, Azmy Wadie, 2015. "Accurate assessment of the output energy from the doubly fed induction generators," Energy, Elsevier, vol. 93(P1), pages 406-415.
    6. Raju, S.Krishnama & Pillai, G.N., 2016. "Design and real time implementation of type-2 fuzzy vector control for DFIG based wind generators," Renewable Energy, Elsevier, vol. 88(C), pages 40-50.
    7. Abderraouf Boumassata & Djallel Kerdoun, 2017. "Speed control of a doubly fed induction machine via an AC–AC converter," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(1), pages 407-412, January.
    8. Suganthi, L. & Iniyan, S. & Samuel, Anand A., 2015. "Applications of fuzzy logic in renewable energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 585-607.
    9. El-Kharashi, Eyhab & El-Dessouki, Maher, 2014. "Coupling induction motors to improve the energy conversion process during balanced and unbalanced operation," Energy, Elsevier, vol. 65(C), pages 511-516.
    10. Gayen, P.K. & Chatterjee, D. & Goswami, S.K., 2015. "Stator side active and reactive power control with improved rotor position and speed estimator of a grid connected DFIG (doubly-fed induction generator)," Energy, Elsevier, vol. 89(C), pages 461-472.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Zhanfeng & Shi, Tingna & Xia, Changliang & Chen, Wei, 2012. "A novel adaptive control scheme for dynamic performance improvement of DFIG-Based wind turbines," Energy, Elsevier, vol. 38(1), pages 104-117.
    2. Derafshian, Mehdi & Amjady, Nima, 2015. "Optimal design of power system stabilizer for power systems including doubly fed induction generator wind turbines," Energy, Elsevier, vol. 84(C), pages 1-14.
    3. Mohd Zin, Abdullah Asuhaimi B. & Pesaran H.A., Mahmoud & Khairuddin, Azhar B. & Jahanshaloo, Leila & Shariati, Omid, 2013. "An overview on doubly fed induction generators′ controls and contributions to wind based electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 692-708.
    4. Lin, Whei-Min & Hong, Chih-Ming & Cheng, Fu-Sheng, 2010. "On-line designed hybrid controller with adaptive observer for variable-speed wind generation system," Energy, Elsevier, vol. 35(7), pages 3022-3030.
    5. Moradi, Hamed & Vossoughi, Gholamreza, 2015. "Robust control of the variable speed wind turbines in the presence of uncertainties: A comparison between H∞ and PID controllers," Energy, Elsevier, vol. 90(P2), pages 1508-1521.
    6. Dargahi, Vahid & Sadigh, Arash Khoshkbar & Pahlavani, Mohammad Reza Alizadeh & Shoulaie, Abbas, 2012. "DC (direct current) voltage source reduction in stacked multicell converter based energy systems," Energy, Elsevier, vol. 46(1), pages 649-663.
    7. Radičević, Branko M. & Savić, Milan S. & Madsen, Søren Find & Badea, Ion, 2012. "Impact of wind turbine blade rotation on the lightning strike incidence – A theoretical and experimental study using a reduced-size model," Energy, Elsevier, vol. 45(1), pages 644-654.
    8. Li, Yan & Dong, Yuxing & Zhang, Qiang & Cao, Lihua, 2014. "Design, analysis and implementation of a constant-voltage power generation system based on a novel memory machine," Energy, Elsevier, vol. 76(C), pages 875-883.
    9. Suganthi, L. & Iniyan, S. & Samuel, Anand A., 2015. "Applications of fuzzy logic in renewable energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 585-607.
    10. Howlader, Abdul Motin & Izumi, Yuya & Uehara, Akie & Urasaki, Naomitsu & Senjyu, Tomonobu & Yona, Atsushi & Saber, Ahmed Yousuf, 2012. "A minimal order observer based frequency control strategy for an integrated wind-battery-diesel power system," Energy, Elsevier, vol. 46(1), pages 168-178.
    11. Fodor, Attila & Magyar, Attila & Hangos, Katalin M., 2012. "Control-oriented modeling of the energy-production of a synchronous generator in a nuclear power plant," Energy, Elsevier, vol. 39(1), pages 135-145.
    12. Sarrias-Mena, Raúl & Fernández-Ramírez, Luis M. & García-Vázquez, Carlos Andrés & Jurado, Francisco, 2014. "Fuzzy logic based power management strategy of a multi-MW doubly-fed induction generator wind turbine with battery and ultracapacitor," Energy, Elsevier, vol. 70(C), pages 561-576.
    13. Melício, R. & Mendes, V.M.F. & Catalão, J.P.S., 2011. "Comparative study of power converter topologies and control strategies for the harmonic performance of variable-speed wind turbine generator systems," Energy, Elsevier, vol. 36(1), pages 520-529.
    14. Yin, Xiu-xing & Lin, Yong-gang & Li, Wei & Gu, Ya-jing & Liu, Hong-wei & Lei, Peng-fei, 2015. "A novel fuzzy integral sliding mode current control strategy for maximizing wind power extraction and eliminating voltage harmonics," Energy, Elsevier, vol. 85(C), pages 677-686.
    15. Li, Yanfu & Zio, Enrico, 2012. "Uncertainty analysis of the adequacy assessment model of a distributed generation system," Renewable Energy, Elsevier, vol. 41(C), pages 235-244.
    16. Chen, Yen-Haw & Lu, Su-Ying & Chang, Yung-Ruei & Lee, Ta-Tung & Hu, Ming-Che, 2013. "Economic analysis and optimal energy management models for microgrid systems: A case study in Taiwan," Applied Energy, Elsevier, vol. 103(C), pages 145-154.
    17. Phan, Dinh-Chung & Yamamoto, Shigeru, 2016. "Rotor speed control of doubly fed induction generator wind turbines using adaptive maximum power point tracking," Energy, Elsevier, vol. 111(C), pages 377-388.
    18. Jun Wang & Yien Xu & Xiaoxin Wu & Jiejie Huang & Xinsong Zhang & Hongliang Yuan, 2021. "Enhanced Inertial Response Capability of a Variable Wind Energy Conversion System," Energies, MDPI, vol. 14(23), pages 1-13, December.
    19. Ming-Fa Tsai & Chung-Shi Tseng & Bor-Yuh Lin, 2020. "Phase Voltage-Oriented Control of a PMSG Wind Generator for Unity Power Factor Correction," Energies, MDPI, vol. 13(21), pages 1-22, October.
    20. Hachicha, Fatma & Krichen, Lotfi, 2012. "Rotor power control in doubly fed induction generator wind turbine under grid faults," Energy, Elsevier, vol. 44(1), pages 853-861.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:51:y:2013:i:c:p:154-162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.