Rotor speed control of doubly fed induction generator wind turbines using adaptive maximum power point tracking
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2016.05.077
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ganjefar, Soheil & Ghasemi, Ali Akbar, 2014. "A novel-strategy controller design for maximum power extraction in stand-alone windmill systems," Energy, Elsevier, vol. 76(C), pages 326-335.
- Fernandez, L.M. & Garcia, C.A. & Jurado, F., 2008. "Comparative study on the performance of control systems for doubly fed induction generator (DFIG) wind turbines operating with power regulation," Energy, Elsevier, vol. 33(9), pages 1438-1452.
- Hae Gwang Jeong & Ro Hak Seung & Kyo Beum Lee, 2012. "An Improved Maximum Power Point Tracking Method for Wind Power Systems," Energies, MDPI, vol. 5(5), pages 1-16, May.
- Alizadeh, Mojtaba & Kojori, Shokrollah Shokri, 2015. "Augmenting effectiveness of control loops of a PMSG (permanent magnet synchronous generator) based wind energy conversion system by a virtually adaptive PI (proportional integral) controller," Energy, Elsevier, vol. 91(C), pages 610-629.
- Belmokhtar, K. & Doumbia, M.L. & Agbossou, K., 2014. "Novel fuzzy logic based sensorless maximum power point tracking strategy for wind turbine systems driven DFIG (doubly-fed induction generator)," Energy, Elsevier, vol. 76(C), pages 679-693.
- Ganjefar, Soheil & Ghassemi, Ali Akbar & Ahmadi, Mohamad Mehdi, 2014. "Improving efficiency of two-type maximum power point tracking methods of tip-speed ratio and optimum torque in wind turbine system using a quantum neural network," Energy, Elsevier, vol. 67(C), pages 444-453.
- González, L.G. & Figueres, E. & Garcerá, G. & Carranza, O., 2010. "Maximum-power-point tracking with reduced mechanical stress applied to wind-energy-conversion-systems," Applied Energy, Elsevier, vol. 87(7), pages 2304-2312, July.
- Lin, Whei-Min & Hong, Chih-Ming & Cheng, Fu-Sheng, 2010. "On-line designed hybrid controller with adaptive observer for variable-speed wind generation system," Energy, Elsevier, vol. 35(7), pages 3022-3030.
- Abdullah, M.A. & Yatim, A.H.M. & Tan, C.W. & Saidur, R., 2012. "A review of maximum power point tracking algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3220-3227.
- Dinh-Chung Phan & Shigeru Yamamoto, 2015. "Maximum Energy Output of a DFIG Wind Turbine Using an Improved MPPT-Curve Method," Energies, MDPI, vol. 8(10), pages 1-19, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Darvish Falehi, Ali, 2020. "An innovative optimal RPO-FOSMC based on multi-objective grasshopper optimization algorithm for DFIG-based wind turbine to augment MPPT and FRT capabilities," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
- Yang, Bo & Yu, Tao & Shu, Hongchun & Dong, Jun & Jiang, Lin, 2018. "Robust sliding-mode control of wind energy conversion systems for optimal power extraction via nonlinear perturbation observers," Applied Energy, Elsevier, vol. 210(C), pages 711-723.
- Kelkoul, Bahia & Boumediene, Abdelmadjid, 2021. "Stability analysis and study between classical sliding mode control (SMC) and super twisting algorithm (STA) for doubly fed induction generator (DFIG) under wind turbine," Energy, Elsevier, vol. 214(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dinh-Chung Phan & Shigeru Yamamoto, 2015. "Maximum Energy Output of a DFIG Wind Turbine Using an Improved MPPT-Curve Method," Energies, MDPI, vol. 8(10), pages 1-19, October.
- Ganjefar, Soheil & Mohammadi, Ali, 2016. "Variable speed wind turbines with maximum power extraction using singular perturbation theory," Energy, Elsevier, vol. 106(C), pages 510-519.
- Fathabadi, Hassan, 2016. "Novel high-efficient unified maximum power point tracking controller for hybrid fuel cell/wind systems," Applied Energy, Elsevier, vol. 183(C), pages 1498-1510.
- Ganjefar, Soheil & Ghasemi, Ali Akbar, 2014. "A novel-strategy controller design for maximum power extraction in stand-alone windmill systems," Energy, Elsevier, vol. 76(C), pages 326-335.
- Alizadeh, Mojtaba & Kojori, Shokrollah Shokri, 2015. "Augmenting effectiveness of control loops of a PMSG (permanent magnet synchronous generator) based wind energy conversion system by a virtually adaptive PI (proportional integral) controller," Energy, Elsevier, vol. 91(C), pages 610-629.
- Belmokhtar, K. & Doumbia, M.L. & Agbossou, K., 2014. "Novel fuzzy logic based sensorless maximum power point tracking strategy for wind turbine systems driven DFIG (doubly-fed induction generator)," Energy, Elsevier, vol. 76(C), pages 679-693.
- Emejeamara, F.C. & Tomlin, A.S. & Millward-Hopkins, J.T., 2015. "Urban wind: Characterisation of useful gust and energy capture," Renewable Energy, Elsevier, vol. 81(C), pages 162-172.
- Derafshian, Mehdi & Amjady, Nima, 2015. "Optimal design of power system stabilizer for power systems including doubly fed induction generator wind turbines," Energy, Elsevier, vol. 84(C), pages 1-14.
- Marwa Hassan & Alsnosy Balbaa & Hanady H. Issa & Noha H. El-Amary, 2018. "Asymptotic Output Tracked Artificial Immunity Controller for Eco-Maximum Power Point Tracking of Wind Turbine Driven by Doubly Fed Induction Generator," Energies, MDPI, vol. 11(10), pages 1-25, October.
- Kumar, Dipesh & Chatterjee, Kalyan, 2016. "A review of conventional and advanced MPPT algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 957-970.
- Gayen, P.K. & Chatterjee, D. & Goswami, S.K., 2015. "Stator side active and reactive power control with improved rotor position and speed estimator of a grid connected DFIG (doubly-fed induction generator)," Energy, Elsevier, vol. 89(C), pages 461-472.
- Shin Young Heo & Mun Kyeom Kim & Jin Woo Choi, 2015. "Hybrid Intelligent Control Method to Improve the Frequency Support Capability of Wind Energy Conversion Systems," Energies, MDPI, vol. 8(10), pages 1-22, October.
- Tiwari, Ramji & Babu, N. Ramesh, 2016. "Recent developments of control strategies for wind energy conversion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 268-285.
- Saheb-Koussa, Djohra & Haddadi, Mourad & Belhamel, Maiouf & Hadji, Seddik & Nouredine, Said, 2010. "Modeling and simulation of the fixed-speed WECS (wind energy conversion system): Application to the Algerian Sahara area," Energy, Elsevier, vol. 35(10), pages 4116-4125.
- Muthana Alrifai & Mohamed Zribi & Mohamed Rayan, 2016. "Feedback Linearization Controller for a Wind Energy Power System," Energies, MDPI, vol. 9(10), pages 1-23, September.
- Yin, Minghui & Yang, Zhiqiang & Xu, Yan & Liu, Jiankun & Zhou, Lianjun & Zou, Yun, 2018. "Aerodynamic optimization for variable-speed wind turbines based on wind energy capture efficiency," Applied Energy, Elsevier, vol. 221(C), pages 508-521.
- Bo Li & Wenhu Tang & Kaishun Xiahou & Qinghua Wu, 2017. "Development of Novel Robust Regulator for Maximum Wind Energy Extraction Based upon Perturbation and Observation," Energies, MDPI, vol. 10(4), pages 1-21, April.
- Njiri, Jackson G. & Söffker, Dirk, 2016. "State-of-the-art in wind turbine control: Trends and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 377-393.
- Constantin Voloşencu, 2021. "A Comparative Analysis of Some Methods for Wind Turbine Maximum Power Point Tracking," Mathematics, MDPI, vol. 9(19), pages 1-33, September.
- Fathabadi, Hassan, 2016. "Maximum mechanical power extraction from wind turbines using novel proposed high accuracy single-sensor-based maximum power point tracking technique," Energy, Elsevier, vol. 113(C), pages 1219-1230.
More about this item
Keywords
Doubly fed induction generator; Lyapunov function; Maximum power point tracking; Maximum energy; Adaptive control;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:111:y:2016:i:c:p:377-388. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.