IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v83y2015icp734-748.html
   My bibliography  Save this article

An efficient scenario-based stochastic programming for optimal planning of combined heat, power, and hydrogen production of molten carbonate fuel cell power plants

Author

Listed:
  • Bornapour, Mosayeb
  • Hooshmand, Rahmat-Allah

Abstract

In this paper, a stochastic model is proposed for planning the location and operation of Molten Carbonate Fuel Cell Power Plants (MCFCPPs) in distribution networks when used for Combined Heat, Power, and Hydrogen (CHPH) simultaneously. Uncertainties of electrical and thermal loads forecasting; the pressures of hydrogen, oxygen, and carbon dioxide imported to MCFCPPs; and the nominal temperature of MCFCPPs are considered using a scenario-based method. In the method, scenarios are generated using Roulette Wheel Mechanism (RWM) based on Probability Distribution Functions (PDF) of input random variables. Using this method, probabilistic specifics of the problem are distributed and the problem is converted to a deterministic one. The type of the objective functions, placement, and operation of MCFCPPs as CHPH change this problem to a mixed integer nonlinear one. So, multi-objective Modified Firefly Algorithm (MFA) and Pareto optimal method are employed for solving the multi-objective problem and for compromising between the objective functions. During the simulation process, a set of non-dominated solutions are stored in a repository. The 69-bus distribution system is used for evaluating the proper function of the proposed method.

Suggested Citation

  • Bornapour, Mosayeb & Hooshmand, Rahmat-Allah, 2015. "An efficient scenario-based stochastic programming for optimal planning of combined heat, power, and hydrogen production of molten carbonate fuel cell power plants," Energy, Elsevier, vol. 83(C), pages 734-748.
  • Handle: RePEc:eee:energy:v:83:y:2015:i:c:p:734-748
    DOI: 10.1016/j.energy.2015.02.082
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215002376
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.02.082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Roosta, Alireza & Amiri, Babak, 2012. "A new multi-objective reserve constrained combined heat and power dynamic economic emission dispatch," Energy, Elsevier, vol. 42(1), pages 530-545.
    2. Niknam, Taher & Golestaneh, Faranak & Malekpour, Ahmadreza, 2012. "Probabilistic energy and operation management of a microgrid containing wind/photovoltaic/fuel cell generation and energy storage devices based on point estimate method and self-adaptive gravitational," Energy, Elsevier, vol. 43(1), pages 427-437.
    3. Ebrahim Farjah & Mosayeb Bornapour & Taher Niknam & Bahman Bahmanifirouzi, 2012. "Placement of Combined Heat, Power and Hydrogen Production Fuel Cell Power Plants in a Distribution Network," Energies, MDPI, vol. 5(3), pages 1-25, March.
    4. Aman, M.M. & Jasmon, G.B. & Bakar, A.H.A. & Mokhlis, H., 2014. "A new approach for optimum simultaneous multi-DG distributed generation Units placement and sizing based on maximization of system loadability using HPSO (hybrid particle swarm optimization) algorithm," Energy, Elsevier, vol. 66(C), pages 202-215.
    5. Dimopoulos, George G. & Stefanatos, Iason C. & Kakalis, Nikolaos M.P., 2013. "Exergy analysis and optimisation of a steam methane pre-reforming system," Energy, Elsevier, vol. 58(C), pages 17-27.
    6. Zangeneh, Ali & Jadid, Shahram & Rahimi-Kian, Ashkan, 2011. "A fuzzy environmental-technical-economic model for distributed generation planning," Energy, Elsevier, vol. 36(5), pages 3437-3445.
    7. Moradi, Mohammad H. & Hajinazari, Mehdi & Jamasb, Shahriar & Paripour, Mahmoud, 2013. "An energy management system (EMS) strategy for combined heat and power (CHP) systems based on a hybrid optimization method employing fuzzy programming," Energy, Elsevier, vol. 49(C), pages 86-101.
    8. Doagou-Mojarrad, Hasan & Gharehpetian, G.B. & Rastegar, H. & Olamaei, Javad, 2013. "Optimal placement and sizing of DG (distributed generation) units in distribution networks by novel hybrid evolutionary algorithm," Energy, Elsevier, vol. 54(C), pages 129-138.
    9. Zidan, Aboelsood & El-Saadany, Ehab F., 2013. "Distribution system reconfiguration for energy loss reduction considering the variability of load and local renewable generation," Energy, Elsevier, vol. 59(C), pages 698-707.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jiangjiang & Liu, Yi & Ren, Fukang & Lu, Shuaikang, 2020. "Multi-objective optimization and selection of hybrid combined cooling, heating and power systems considering operational flexibility," Energy, Elsevier, vol. 197(C).
    2. Bornapour, Mosayeb & Hooshmand, Rahmat-Allah & Khodabakhshian, Amin & Parastegari, Moein, 2017. "Optimal stochastic coordinated scheduling of proton exchange membrane fuel cell-combined heat and power, wind and photovoltaic units in micro grids considering hydrogen storage," Applied Energy, Elsevier, vol. 202(C), pages 308-322.
    3. Ghasemi, Mojtaba & Aghaei, Jamshid & Akbari, Ebrahim & Ghavidel, Sahand & Li, Li, 2016. "A differential evolution particle swarm optimizer for various types of multi-area economic dispatch problems," Energy, Elsevier, vol. 107(C), pages 182-195.
    4. Bornapour, Mosayeb & Hooshmand, Rahmat-Allah & Parastegari, Moein, 2019. "An efficient scenario-based stochastic programming method for optimal scheduling of CHP-PEMFC, WT, PV and hydrogen storage units in micro grids," Renewable Energy, Elsevier, vol. 130(C), pages 1049-1066.
    5. Turk, Ana & Wu, Qiuwei & Zhang, Menglin & Østergaard, Jacob, 2020. "Day-ahead stochastic scheduling of integrated multi-energy system for flexibility synergy and uncertainty balancing," Energy, Elsevier, vol. 196(C).
    6. Bagherzade, Shima & Hooshmand, Rahmat-Allah & Firouzmakan, Pouya & Khodabakhshian, Amin & Gholipour, Mehdi, 2019. "Stochastic parking energy pricing strategies to promote competition arena in an intelligent parking," Energy, Elsevier, vol. 188(C).
    7. Firouzmakan, Pouya & Hooshmand, Rahmat-Allah & Bornapour, Mosayeb & Khodabakhshian, Amin, 2019. "A comprehensive stochastic energy management system of micro-CHP units, renewable energy sources and storage systems in microgrids considering demand response programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 355-368.
    8. Xide Zhu & Peijun Guo, 2020. "Bilevel programming approaches to production planning for multiple products with short life cycles," 4OR, Springer, vol. 18(2), pages 151-175, June.
    9. Mehr, A.S. & Lanzini, A. & Santarelli, M. & Rosen, Marc A., 2021. "Polygeneration systems based on high temperature fuel cell (MCFC and SOFC) technology: System design, fuel types, modeling and analysis approaches," Energy, Elsevier, vol. 228(C).
    10. Kang, Hyuna & Hong, Juwon & Hong, Taehoon & Han, Dongsu & Chin, Sangyoon & Lee, Minhyun, 2019. "Determining the optimal long-term service agreement period and cost considering the uncertain factors in the fuel cell: From the perspectives of the sellers and generators," Applied Energy, Elsevier, vol. 237(C), pages 378-389.
    11. Bornapour, Mosayeb & Hooshmand, Rahmat-Allah & Khodabakhshian, Amin & Parastegari, Moein, 2016. "Optimal coordinated scheduling of combined heat and power fuel cell, wind, and photovoltaic units in micro grids considering uncertainties," Energy, Elsevier, vol. 117(P1), pages 176-189.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tolabi, Hajar Bagheri & Ali, Mohd Hasan & Shahrin Bin Md Ayob, & Rizwan, M., 2014. "Novel hybrid fuzzy-Bees algorithm for optimal feeder multi-objective reconfiguration by considering multiple-distributed generation," Energy, Elsevier, vol. 71(C), pages 507-515.
    2. Bhowmik, Chiranjib & Bhowmik, Sumit & Ray, Amitava & Pandey, Krishna Murari, 2017. "Optimal green energy planning for sustainable development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 796-813.
    3. Sultana, U. & Khairuddin, Azhar B. & Sultana, Beenish & Rasheed, Nadia & Qazi, Sajid Hussain & Malik, Nimra Riaz, 2018. "Placement and sizing of multiple distributed generation and battery swapping stations using grasshopper optimizer algorithm," Energy, Elsevier, vol. 165(PA), pages 408-421.
    4. Prakash, Prem & Khatod, Dheeraj K., 2016. "Optimal sizing and siting techniques for distributed generation in distribution systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 111-130.
    5. Santhosh, Apoorva & Farid, Amro M. & Youcef-Toumi, Kamal, 2014. "The impact of storage facility capacity and ramping capabilities on the supply side economic dispatch of the energy–water nexus," Energy, Elsevier, vol. 66(C), pages 363-377.
    6. Das, Bikash & Mukherjee, V. & Das, Debapriya, 2019. "Optimum DG placement for known power injection from utility/substation by a novel zero bus load flow approach," Energy, Elsevier, vol. 175(C), pages 228-249.
    7. Zare, Mohsen & Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Amiri, Babak, 2014. "Multi-objective probabilistic reactive power and voltage control with wind site correlations," Energy, Elsevier, vol. 66(C), pages 810-822.
    8. Ahmadigorji, Masoud & Amjady, Nima, 2016. "A multiyear DG-incorporated framework for expansion planning of distribution networks using binary chaotic shark smell optimization algorithm," Energy, Elsevier, vol. 102(C), pages 199-215.
    9. Mahesh Kumar & Amir Mahmood Soomro & Waqar Uddin & Laveet Kumar, 2022. "Optimal Multi-Objective Placement and Sizing of Distributed Generation in Distribution System: A Comprehensive Review," Energies, MDPI, vol. 15(21), pages 1-48, October.
    10. Bahmani-Firouzi, Bahman & Farjah, Ebrahim & Azizipanah-Abarghooee, Rasoul, 2013. "An efficient scenario-based and fuzzy self-adaptive learning particle swarm optimization approach for dynamic economic emission dispatch considering load and wind power uncertainties," Energy, Elsevier, vol. 50(C), pages 232-244.
    11. Lobão, J.A. & Devezas, T. & Catalão, J.P.S., 2014. "Influence of cable losses on the economic analysis of efficient and sustainable electrical equipment," Energy, Elsevier, vol. 65(C), pages 145-151.
    12. Hashim, Haslenda & Ho, Wai Shin & Lim, Jeng Shiun & Macchietto, Sandro, 2014. "Integrated biomass and solar town: Incorporation of load shifting and energy storage," Energy, Elsevier, vol. 75(C), pages 31-39.
    13. Kavousi-Fard, Abdollah & Abunasri, Alireza & Zare, Alireza & Hoseinzadeh, Rasool, 2014. "Impact of plug-in hybrid electric vehicles charging demand on the optimal energy management of renewable micro-grids," Energy, Elsevier, vol. 78(C), pages 904-915.
    14. Kumar Mahesh & Perumal Nallagownden & Irraivan Elamvazuthi, 2016. "Advanced Pareto Front Non-Dominated Sorting Multi-Objective Particle Swarm Optimization for Optimal Placement and Sizing of Distributed Generation," Energies, MDPI, vol. 9(12), pages 1-23, November.
    15. Mena, Rodrigo & Hennebel, Martin & Li, Yan-Fu & Zio, Enrico, 2016. "A multi-objective optimization framework for risk-controlled integration of renewable generation into electric power systems," Energy, Elsevier, vol. 106(C), pages 712-727.
    16. Zidan, Aboelsood & El-Saadany, Ehab F., 2013. "Distribution system reconfiguration for energy loss reduction considering the variability of load and local renewable generation," Energy, Elsevier, vol. 59(C), pages 698-707.
    17. Elsied, Moataz & Oukaour, Amrane & Gualous, Hamid & Hassan, Radwan, 2015. "Energy management and optimization in microgrid system based on green energy," Energy, Elsevier, vol. 84(C), pages 139-151.
    18. Stojiljković, Mirko M., 2017. "Bi-level multi-objective fuzzy design optimization of energy supply systems aided by problem-specific heuristics," Energy, Elsevier, vol. 137(C), pages 1231-1251.
    19. Barik, Soumyabrata & Das, Debapriya, 2020. "A novel Q−PQV bus pair method of biomass DGs placement in distribution networks to maintain the voltage of remotely located buses," Energy, Elsevier, vol. 194(C).
    20. Taimoor Ahmad Khan & Amjad Ullah & Ghulam Hafeez & Imran Khan & Sadia Murawwat & Faheem Ali & Sajjad Ali & Sheraz Khan & Khalid Rehman, 2022. "A Fractional Order Super Twisting Sliding Mode Controller for Energy Management in Smart Microgrid Using Dynamic Pricing Approach," Energies, MDPI, vol. 15(23), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:83:y:2015:i:c:p:734-748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.