IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v75y2014icp31-39.html
   My bibliography  Save this article

Integrated biomass and solar town: Incorporation of load shifting and energy storage

Author

Listed:
  • Hashim, Haslenda
  • Ho, Wai Shin
  • Lim, Jeng Shiun
  • Macchietto, Sandro

Abstract

The IBS (Integrated Biomass Solar) town is a concept which encourages local community to utilize biomass waste comprehensively with strong ties between community and local stakeholders. This paper discusses an IBS model and solution for an electrically self-sufficient eco-village with and without LS (load shifting). ES (energy storage) is also incorporated to help reduce electricity demand during peak periods and smooth variations in power generation by variable generation of solar power. Application to a realistic case study shows that substantial technical and economic benefits are achieved through the implementation of IBS with LS and ES. In this study, the LS is used mainly to increase demand during periods of high supply and also shift the load to intervals with low demand. This reduces the size of ES significantly, where the load is subject to distinct weekday and weekend profiles. The study shows that highly competitive electricity prices are obtained and the concept offers the opportunity to spur economic growth and environmental protection through energy efficiency improvement and deployment of low-carbon technologies.

Suggested Citation

  • Hashim, Haslenda & Ho, Wai Shin & Lim, Jeng Shiun & Macchietto, Sandro, 2014. "Integrated biomass and solar town: Incorporation of load shifting and energy storage," Energy, Elsevier, vol. 75(C), pages 31-39.
  • Handle: RePEc:eee:energy:v:75:y:2014:i:c:p:31-39
    DOI: 10.1016/j.energy.2014.04.086
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421400499X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.04.086?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zidan, Aboelsood & El-Saadany, Ehab F., 2013. "Distribution system reconfiguration for energy loss reduction considering the variability of load and local renewable generation," Energy, Elsevier, vol. 59(C), pages 698-707.
    2. Mohammad Rozali, Nor Erniza & Wan Alwi, Sharifah Rafidah & Abdul Manan, Zainuddin & Klemeš, Jiří Jaromír & Hassan, Mohammad Yusri, 2013. "Process integration of hybrid power systems with energy losses considerations," Energy, Elsevier, vol. 55(C), pages 38-45.
    3. Gupta, Ajai & Saini, R.P. & Sharma, M.P., 2011. "Modelling of hybrid energy system—Part I: Problem formulation and model development," Renewable Energy, Elsevier, vol. 36(2), pages 459-465.
    4. Gupta, Ajai & Saini, R.P. & Sharma, M.P., 2011. "Modelling of hybrid energy system—Part II: Combined dispatch strategies and solution algorithm," Renewable Energy, Elsevier, vol. 36(2), pages 466-473.
    5. Buoro, D. & Casisi, M. & De Nardi, A. & Pinamonti, P. & Reini, M., 2013. "Multicriteria optimization of a distributed energy supply system for an industrial area," Energy, Elsevier, vol. 58(C), pages 128-137.
    6. Ho, W.S. & Hashim, H. & Hassim, M.H. & Muis, Z.A. & Shamsuddin, N.L.M., 2012. "Design of distributed energy system through Electric System Cascade Analysis (ESCA)," Applied Energy, Elsevier, vol. 99(C), pages 309-315.
    7. Lujano-Rojas, Juan M. & Monteiro, Cláudio & Dufo-López, Rodolfo & Bernal-Agustín, José L., 2012. "Optimum load management strategy for wind/diesel/battery hybrid power systems," Renewable Energy, Elsevier, vol. 44(C), pages 288-295.
    8. Bracco, Stefano & Dentici, Gabriele & Siri, Silvia, 2013. "Economic and environmental optimization model for the design and the operation of a combined heat and power distributed generation system in an urban area," Energy, Elsevier, vol. 55(C), pages 1014-1024.
    9. Voll, Philip & Klaffke, Carsten & Hennen, Maike & Bardow, André, 2013. "Automated superstructure-based synthesis and optimization of distributed energy supply systems," Energy, Elsevier, vol. 50(C), pages 374-388.
    10. Perera, A.T.D. & Attalage, R.A. & Perera, K.K.C.K. & Dassanayake, V.P.C., 2013. "Designing standalone hybrid energy systems minimizing initial investment, life cycle cost and pollutant emission," Energy, Elsevier, vol. 54(C), pages 220-230.
    11. Gupta, Ajai & Saini, R.P. & Sharma, M.P., 2011. "Modelling of hybrid energy system—Part III: Case study with simulation results," Renewable Energy, Elsevier, vol. 36(2), pages 474-481.
    12. Doagou-Mojarrad, Hasan & Gharehpetian, G.B. & Rastegar, H. & Olamaei, Javad, 2013. "Optimal placement and sizing of DG (distributed generation) units in distribution networks by novel hybrid evolutionary algorithm," Energy, Elsevier, vol. 54(C), pages 129-138.
    13. Félix Iglesias & Peter Palensky & Sergio Cantos & Friederich Kupzog, 2012. "Demand Side Management for Stand-Alone Hybrid Power Systems Based on Load Identification," Energies, MDPI, vol. 5(11), pages 1-16, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anvari, Simin & Khalilarya, Sharam & Zare, V., 2018. "Exergoeconomic and environmental analysis of a novel configuration of solar-biomass hybrid power generation system," Energy, Elsevier, vol. 165(PB), pages 776-789.
    2. Ho, Wai Shin & Macchietto, Sandro & Lim, Jeng Shiun & Hashim, Haslenda & Muis, Zarina Ab. & Liu, Wen Hui, 2016. "Optimal scheduling of energy storage for renewable energy distributed energy generation system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1100-1107.
    3. Al Asfar, Jamil & AlShwawra, Ahmad & Shaban, Nabeel Abu & Alrbai, Mohammad & Qawasmeh, Bashar R. & Sakhrieh, Ahmad & Hamdan, Mohammad A. & Odeh, Omar, 2020. "Thermodynamic analysis of a biomass-fired lab-scale power plant," Energy, Elsevier, vol. 194(C).
    4. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
    5. Abhi Chatterjee & Daniel Burmester & Alan Brent & Ramesh Rayudu, 2019. "Research Insights and Knowledge Headways for Developing Remote, Off-Grid Microgrids in Developing Countries," Energies, MDPI, vol. 12(10), pages 1-19, May.
    6. Wegener, Moritz & Malmquist, Anders & Isalgué, Antonio & Martin, Andrew, 2018. "Biomass-fired combined cooling, heating and power for small scale applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 392-410.
    7. Liu, Wen Hui & Ho, Wai Shin & Lee, Ming Yang & Hashim, Haslenda & Lim, Jeng Shiun & Klemeš, Jiří J. & Mah, Angel Xin Yee, 2019. "Development and optimization of an integrated energy network with centralized and decentralized energy systems using mathematical modelling approach," Energy, Elsevier, vol. 183(C), pages 617-629.
    8. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    9. Mohammad Rozali, Nor Erniza & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Klemeš, Jiří Jaromír, 2015. "Peak-off-peak load shifting for hybrid power systems based on Power Pinch Analysis," Energy, Elsevier, vol. 90(P1), pages 128-136.
    10. Ji, Ling & Liang, Xiaolin & Xie, Yulei & Huang, Guohe & Wang, Bing, 2021. "Optimal design and sensitivity analysis of the stand-alone hybrid energy system with PV and biomass-CHP for remote villages," Energy, Elsevier, vol. 225(C).
    11. Theo, Wai Lip & Lim, Jeng Shiun & Wan Alwi, Sharifah Rafidah & Mohammad Rozali, Nor Erniza & Ho, Wai Shin & Abdul-Manan, Zainuddin, 2016. "An MILP model for cost-optimal planning of an on-grid hybrid power system for an eco-industrial park," Energy, Elsevier, vol. 116(P2), pages 1423-1441.
    12. Sosa, Amanda & Acuna, Mauricio & McDonnell, Kevin & Devlin, Ger, 2015. "Managing the moisture content of wood biomass for the optimisation of Ireland's transport supply strategy to bioenergy markets and competing industries," Energy, Elsevier, vol. 86(C), pages 354-368.
    13. Zhu, Mengshu & Fang, Jiakun & Ai, Xiaomeng & Cui, Shichang & Feng, Yuang & Li, Peng & Zhang, Yihan & Zheng, Yongle & Chen, Zhe & Wen, Jinyu, 2023. "A comprehensive methodology for optimal planning of remote integrated energy systems," Energy, Elsevier, vol. 285(C).
    14. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    15. Moharramian, Anahita & Soltani, Saeed & Rosen, Marc A. & Mahmoudi, S.M.S. & Bhattacharya, Tanushree, 2019. "Modified exergy and modified exergoeconomic analyses of a solar based biomass co-fired cycle with hydrogen production," Energy, Elsevier, vol. 167(C), pages 715-729.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
    2. Abhi Chatterjee & Daniel Burmester & Alan Brent & Ramesh Rayudu, 2019. "Research Insights and Knowledge Headways for Developing Remote, Off-Grid Microgrids in Developing Countries," Energies, MDPI, vol. 12(10), pages 1-19, May.
    3. Ho, W.S. & Hashim, H. & Lim, J.S., 2014. "Integrated biomass and solar town concept for a smart eco-village in Iskandar Malaysia (IM)," Renewable Energy, Elsevier, vol. 69(C), pages 190-201.
    4. Chauhan, Anurag & Saini, R.P., 2017. "Size optimization and demand response of a stand-alone integrated renewable energy system," Energy, Elsevier, vol. 124(C), pages 59-73.
    5. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    6. Bahramara, Salah & Sheikhahmadi, Pouria & Golpîra, Hêmin, 2019. "Co-optimization of energy and reserve in standalone micro-grid considering uncertainties," Energy, Elsevier, vol. 176(C), pages 792-804.
    7. Wakui, Tetsuya & Yokoyama, Ryohei, 2014. "Optimal structural design of residential cogeneration systems in consideration of their operating restrictions," Energy, Elsevier, vol. 64(C), pages 719-733.
    8. Chauhan, Anurag & Saini, R.P., 2016. "Discrete harmony search based size optimization of Integrated Renewable Energy System for remote rural areas of Uttarakhand state in India," Renewable Energy, Elsevier, vol. 94(C), pages 587-604.
    9. Xu, Xiandong & Jia, Hongjie & Wang, Dan & Yu, David C. & Chiang, Hsiao-Dong, 2015. "Hierarchical energy management system for multi-source multi-product microgrids," Renewable Energy, Elsevier, vol. 78(C), pages 621-630.
    10. Yılmaz, Sebnem & Selim, Hasan, 2013. "A review on the methods for biomass to energy conversion systems design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 420-430.
    11. Wakui, Tetsuya & Kinoshita, Takahiro & Yokoyama, Ryohei, 2014. "A mixed-integer linear programming approach for cogeneration-based residential energy supply networks with power and heat interchanges," Energy, Elsevier, vol. 68(C), pages 29-46.
    12. Edwin, M. & Sekhar, S. Joseph, 2015. "Thermal performance of milk chilling units in remote villages working with the combination of biomass, biogas and solar energies," Energy, Elsevier, vol. 91(C), pages 842-851.
    13. Yokoyama, Ryohei & Shinano, Yuji & Taniguchi, Syusuke & Wakui, Tetsuya, 2019. "Search for K-best solutions in optimal design of energy supply systems by an extended MILP hierarchical branch and bound method," Energy, Elsevier, vol. 184(C), pages 45-57.
    14. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
    15. Edwin, M. & Joseph Sekhar, S., 2018. "Techno- Economic evaluation of milk chilling unit retrofitted with hybrid renewable energy system in coastal province," Energy, Elsevier, vol. 151(C), pages 66-78.
    16. Rajanna, S. & Saini, R.P., 2016. "Development of optimal integrated renewable energy model with battery storage for a remote Indian area," Energy, Elsevier, vol. 111(C), pages 803-817.
    17. Liu, Wen Hui & Ho, Wai Shin & Lee, Ming Yang & Hashim, Haslenda & Lim, Jeng Shiun & Klemeš, Jiří J. & Mah, Angel Xin Yee, 2019. "Development and optimization of an integrated energy network with centralized and decentralized energy systems using mathematical modelling approach," Energy, Elsevier, vol. 183(C), pages 617-629.
    18. Urban, Kristof L. & Scheller, Fabian & Bruckner, Thomas, 2021. "Suitability assessment of models in the industrial energy system design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    19. Torreglosa, Juan P. & García, Pablo & Fernández, Luis M. & Jurado, Francisco, 2015. "Energy dispatching based on predictive controller of an off-grid wind turbine/photovoltaic/hydrogen/battery hybrid system," Renewable Energy, Elsevier, vol. 74(C), pages 326-336.
    20. Barbaro, Marco & Castro, Rui, 2020. "Design optimisation for a hybrid renewable microgrid: Application to the case of Faial island, Azores archipelago," Renewable Energy, Elsevier, vol. 151(C), pages 434-445.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:75:y:2014:i:c:p:31-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.