IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v65y2014icp145-151.html
   My bibliography  Save this article

Influence of cable losses on the economic analysis of efficient and sustainable electrical equipment

Author

Listed:
  • Lobão, J.A.
  • Devezas, T.
  • Catalão, J.P.S.

Abstract

Increasing energy needs are accompanied by environmental responsibilities, since nowadays electricity companies operate in a competitive and sustainable energy framework. In this context, any proposal for action on energy efficiency becomes important for consumers to minimize operational costs. In electrical installations, electricity consumption can be decreased by reducing losses in the cables, associated with the overall efficiency of the equipment, allowing a better use of the installed power. The losses must be analysed in conjunction with all loads that contribute to the currents in the sections of an electrical installation. When replacing equipment in output distribution boxes with more efficient ones, the current in those sections is reduced in association with the decrease in power losses. This decrease, often forgotten, is taken into account in this work for the economic analysis of efficiency and sustainable electrical equipment. This paper presents a new software application that compares and chooses the best investment in the acquisition of electrical equipment. Simulation results obtained with the new software application are provided and are then validated with experimental results from a real electrical installation.

Suggested Citation

  • Lobão, J.A. & Devezas, T. & Catalão, J.P.S., 2014. "Influence of cable losses on the economic analysis of efficient and sustainable electrical equipment," Energy, Elsevier, vol. 65(C), pages 145-151.
  • Handle: RePEc:eee:energy:v:65:y:2014:i:c:p:145-151
    DOI: 10.1016/j.energy.2013.12.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213010797
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.12.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aman, M.M. & Jasmon, G.B. & Mokhlis, H. & Bakar, A.H.A., 2013. "Analysis of the performance of domestic lighting lamps," Energy Policy, Elsevier, vol. 52(C), pages 482-500.
    2. Zidan, Aboelsood & El-Saadany, Ehab F., 2013. "Distribution system reconfiguration for energy loss reduction considering the variability of load and local renewable generation," Energy, Elsevier, vol. 59(C), pages 698-707.
    3. Viral, Rajkumar & Khatod, D.K., 2012. "Optimal planning of distributed generation systems in distribution system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5146-5165.
    4. Jones, Harry, 2008. "Superconductors in the transmission of electricity and networks," Energy Policy, Elsevier, vol. 36(12), pages 4342-4345, December.
    5. Malekpour, Ahmad Reza & Niknam, Taher, 2011. "A probabilistic multi-objective daily Volt/Var control at distribution networks including renewable energy sources," Energy, Elsevier, vol. 36(5), pages 3477-3488.
    6. Dashti, Reza & Yousefi, Shaghayegh & Parsa Moghaddam, Mohsen, 2013. "Comprehensive efficiency evaluation model for electrical distribution system considering social and urban factors," Energy, Elsevier, vol. 60(C), pages 53-61.
    7. Zangeneh, Ali & Jadid, Shahram & Rahimi-Kian, Ashkan, 2011. "A fuzzy environmental-technical-economic model for distributed generation planning," Energy, Elsevier, vol. 36(5), pages 3437-3445.
    8. Özyön, Serdar & Temurtaş, Hasan & Durmuş, Burhanettin & Kuvat, Gültekin, 2012. "Charged system search algorithm for emission constrained economic power dispatch problem," Energy, Elsevier, vol. 46(1), pages 420-430.
    9. Pirouti, Marouf & Bagdanavicius, Audrius & Ekanayake, Janaka & Wu, Jianzhong & Jenkins, Nick, 2013. "Energy consumption and economic analyses of a district heating network," Energy, Elsevier, vol. 57(C), pages 149-159.
    10. El Fadel, M. & Rachid, G. & El-Samra, R. & Bou Boutros, G. & Hashisho, J., 2013. "Emissions reduction and economic implications of renewable energy market penetration of power generation for residential consumption in the MENA region," Energy Policy, Elsevier, vol. 52(C), pages 618-627.
    11. Sola, Antonio Vanderley Herrero & Mota, Caroline Maria de Miranda & Kovaleski, João Luiz, 2011. "A model for improving energy efficiency in industrial motor system using multicriteria analysis," Energy Policy, Elsevier, vol. 39(6), pages 3645-3654, June.
    12. de Athayde Costa e Silva, Marsil & Klein, Carlos Eduardo & Mariani, Viviana Cocco & dos Santos Coelho, Leandro, 2013. "Multiobjective scatter search approach with new combination scheme applied to solve environmental/economic dispatch problem," Energy, Elsevier, vol. 53(C), pages 14-21.
    13. Han, H.J. & Jeon, Y.I. & Lim, S.H. & Kim, W.W. & Chen, K., 2010. "New developments in illumination, heating and cooling technologies for energy-efficient buildings," Energy, Elsevier, vol. 35(6), pages 2647-2653.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roman Sikora & Przemysław Markiewicz & Wiesława Pabjańczyk, 2018. "Computing Active Power Losses Using a Mathematical Model of a Regulated Street Luminaire," Energies, MDPI, vol. 11(6), pages 1-16, May.
    2. Roman Sikora & Przemysław Markiewicz & Wiesława Pabjańczyk, 2018. "The Active Power Losses in the Road Lighting Installation with Dimmable LED Luminaires," Sustainability, MDPI, vol. 10(12), pages 1-25, December.
    3. Paweł Ocłoń & Janusz Pobędza & Paweł Walczak & Piotr Cisek & Andrea Vallati, 2020. "Experimental Validation of a Heat Transfer Model in Underground Power Cable Systems," Energies, MDPI, vol. 13(7), pages 1-10, April.
    4. Niu, Wen-jing & Feng, Zhong-kai & Cheng, Chun-tian, 2018. "Optimization of variable-head hydropower system operation considering power shortage aspect with quadratic programming and successive approximation," Energy, Elsevier, vol. 143(C), pages 1020-1028.
    5. Jorge, Raquel S. & Hertwich, Edgar G., 2014. "Grid infrastructure for renewable power in Europe: The environmental cost," Energy, Elsevier, vol. 69(C), pages 760-768.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grimm, Veronika & Grübel, Julia & Rückel, Bastian & Sölch, Christian & Zöttl, Gregor, 2020. "Storage investment and network expansion in distribution networks: The impact of regulatory frameworks," Applied Energy, Elsevier, vol. 262(C).
    2. Bornapour, Mosayeb & Hooshmand, Rahmat-Allah, 2015. "An efficient scenario-based stochastic programming for optimal planning of combined heat, power, and hydrogen production of molten carbonate fuel cell power plants," Energy, Elsevier, vol. 83(C), pages 734-748.
    3. Manvir Kaur & Smarajit Ghosh, 2017. "Effective Loss Minimization and Allocation of Unbalanced Distribution Network," Energies, MDPI, vol. 10(12), pages 1-17, November.
    4. Nardelli, Andrei & Deuschle, Eduardo & de Azevedo, Leticia Dalpaz & Pessoa, João Lorenço Novaes & Ghisi, Enedir, 2017. "Assessment of Light Emitting Diodes technology for general lighting: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 368-379.
    5. Ippolito, M.G. & Di Silvestre, M.L. & Riva Sanseverino, E. & Zizzo, G. & Graditi, G., 2014. "Multi-objective optimized management of electrical energy storage systems in an islanded network with renewable energy sources under different design scenarios," Energy, Elsevier, vol. 64(C), pages 648-662.
    6. Guido C. Guerrero-Liquet & Santiago Oviedo-Casado & J. M. Sánchez-Lozano & M. Socorro García-Cascales & Javier Prior & Antonio Urbina, 2018. "Determination of the Optimal Size of Photovoltaic Systems by Using Multi-Criteria Decision-Making Methods," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    7. Funcke, Simon & Bauknecht, Dierk, 2016. "Typology of centralised and decentralised visions for electricity infrastructure," Utilities Policy, Elsevier, vol. 40(C), pages 67-74.
    8. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2014. "An optimal investment planning framework for multiple distributed generation units in industrial distribution systems," Applied Energy, Elsevier, vol. 124(C), pages 62-72.
    9. Mohagheghi, Erfan & Gabash, Aouss & Alramlawi, Mansour & Li, Pu, 2018. "Real-time optimal power flow with reactive power dispatch of wind stations using a reconciliation algorithm," Renewable Energy, Elsevier, vol. 126(C), pages 509-523.
    10. Razavi, Seyed-Ehsan & Rahimi, Ehsan & Javadi, Mohammad Sadegh & Nezhad, Ali Esmaeel & Lotfi, Mohamed & Shafie-khah, Miadreza & Catalão, João P.S., 2019. "Impact of distributed generation on protection and voltage regulation of distribution systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 157-167.
    11. Hinker, Jonas & Hemkendreis, Christian & Drewing, Emily & März, Steven & Hidalgo Rodríguez, Diego I. & Myrzik, Johanna M.A., 2017. "A novel conceptual model facilitating the derivation of agent-based models for analyzing socio-technical optimality gaps in the energy domain," Energy, Elsevier, vol. 137(C), pages 1219-1230.
    12. J. Rajalakshmi & S. Durairaj, 2021. "Application of multi-objective optimization algorithm for siting and sizing of distributed generations in distribution networks," Journal of Combinatorial Optimization, Springer, vol. 41(2), pages 267-289, February.
    13. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.
    14. Wang, Weilong & Li, Hailong & Guo, Shaopeng & He, Shiquan & Ding, Jing & Yan, Jinyue & Yang, Jianping, 2015. "Numerical simulation study on discharging process of the direct-contact phase change energy storage system," Applied Energy, Elsevier, vol. 150(C), pages 61-68.
    15. Azcarate, I. & Gutierrez, J.J. & Lazkano, A. & Saiz, P. & Redondo, K. & Leturiondo, L.A., 2016. "Towards limiting the sensitivity of energy-efficient lighting to voltage fluctuations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1384-1395.
    16. Soheil Kavian & Mohsen Saffari Pour & Ali Hakkaki-Fard, 2019. "Optimized Design of the District Heating System by Considering the Techno-Economic Aspects and Future Weather Projection," Energies, MDPI, vol. 12(9), pages 1-30, May.
    17. repec:hal:gemwpa:hal-00991732 is not listed on IDEAS
    18. Chitnis, Dipti & Thejo kalyani, N. & Swart, H.C. & Dhoble, S.J., 2016. "Escalating opportunities in the field of lighting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 727-748.
    19. Al Busaidi, Ahmed Said & Kazem, Hussein A & Al-Badi, Abdullah H & Farooq Khan, Mohammad, 2016. "A review of optimum sizing of hybrid PV–Wind renewable energy systems in oman," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 185-193.
    20. Matej Tazky & Michal Regula & Alena Otcenasova, 2021. "Impact of Changes in a Distribution Network Nature on the Capacitive Reactive Power Flow into the Transmission Network in Slovakia," Energies, MDPI, vol. 14(17), pages 1-16, August.
    21. Sultana, U. & Khairuddin, Azhar B. & Aman, M.M. & Mokhtar, A.S. & Zareen, N., 2016. "A review of optimum DG placement based on minimization of power losses and voltage stability enhancement of distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 363-378.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:65:y:2014:i:c:p:145-151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.