IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v333y2023ics0306261922017950.html
   My bibliography  Save this article

Microwave-accelerated hydrolysis for hydrogen production over a cobalt-loaded multi-walled carbon nanotube-magnetite composite catalyst

Author

Listed:
  • Luo, Chunlin
  • Liu, Shuai
  • Yang, Gang
  • Jiang, Peng
  • Luo, Xiang
  • Chen, Yipei
  • Xu, Mengxia
  • Lester, Edward
  • Wu, Tao

Abstract

Microwave (MW) irradiation is a promising option for the intensification of chemical reaction processes and has been applied in the promotion of many catalytic reactions. Herein, the (CNTs-Fe3O4)-Co nanocomposites were designed as microwave-responsive catalysts and was fabricated under a controlled manner. The experimental results showed that MW irradiation can lead to the hydrogen generation rate (HGR) of the (CNTs-Fe3O4)(1:4)-Co (10 wt%) catalyst being boosted from 75.0 to 95.4% as compared with conventional heating under the temperature range of 40 to 60℃. Moreover, the evaluation of the catalytic performance of the (CNTs-Fe3O4)(1:4) composite with different Co loadings and DFT calculations were carried out to verify the synergistic effect of cobalt and Fe3O4 sites of the (CNTs-Fe3O4)(1:4)-Co (10 wt%) catalyst. Furthermore, the pre-exponential factor (A) of NaBH4 hydrolysis under MW heating was found to be approximately 15 times higher than that of conventional heating, implying that MW irradiation significantly improved the effective collision frequency of the atoms at the reaction interface of the catalyst, resulting in a higher number of active sites on the surface of the (CNTs-Fe3O4)(1:4)-Co (10 wt%) catalyst. Additionally, the existence of the non-thermal effect of MW irradiation was studied by using a specially designed experimental set-up. The results showed that MW thermal and non-thermal effects contributed to the enhancement of HGR.

Suggested Citation

  • Luo, Chunlin & Liu, Shuai & Yang, Gang & Jiang, Peng & Luo, Xiang & Chen, Yipei & Xu, Mengxia & Lester, Edward & Wu, Tao, 2023. "Microwave-accelerated hydrolysis for hydrogen production over a cobalt-loaded multi-walled carbon nanotube-magnetite composite catalyst," Applied Energy, Elsevier, vol. 333(C).
  • Handle: RePEc:eee:appene:v:333:y:2023:i:c:s0306261922017950
    DOI: 10.1016/j.apenergy.2022.120538
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922017950
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120538?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaowei Xie & Yong Li & Zhi-Quan Liu & Masatake Haruta & Wenjie Shen, 2009. "Low-temperature oxidation of CO catalysed by Co3O4 nanorods," Nature, Nature, vol. 458(7239), pages 746-749, April.
    2. Shih, Yu-Jen & Su, Chia-Chi & Huang, Yao-Hui & Lu, Ming-Chun, 2013. "SiO2-supported ferromagnetic catalysts for hydrogen generation from alkaline NaBH4 (sodium borohydride) solution," Energy, Elsevier, vol. 54(C), pages 263-270.
    3. Chou, Chang-Chen & Hsieh, Ching-Hsuan & Chen, Bing-Hung, 2015. "Hydrogen generation from catalytic hydrolysis of sodium borohydride using bimetallic Ni–Co nanoparticles on reduced graphene oxide as catalysts," Energy, Elsevier, vol. 90(P2), pages 1973-1982.
    4. J. M. Serra & J. F. Borrás-Morell & B. García-Baños & M. Balaguer & P. Plaza-González & J. Santos-Blasco & D. Catalán-Martínez & L. Navarrete & J. M. Catalá-Civera, 2020. "Hydrogen production via microwave-induced water splitting at low temperature," Nature Energy, Nature, vol. 5(11), pages 910-919, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Teimouri, Zahra & Abatzoglou, Nicolas & Dalai, Ajay K., 2024. "A novel machine learning framework for designing high-performance catalysts for production of clean liquid fuels through Fischer-Tropsch synthesis," Energy, Elsevier, vol. 289(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bozkurt, Gamze & Özer, Abdulkadir & Yurtcan, Ayşe Bayrakçeken, 2019. "Development of effective catalysts for hydrogen generation from sodium borohydride: Ru, Pt, Pd nanoparticles supported on Co3O4," Energy, Elsevier, vol. 180(C), pages 702-713.
    2. Zhang, Hongming & Xu, Guochang & Zhang, Lu & Wang, Wenfeng & Miao, Wenkang & Chen, Kangli & Cheng, Lina & Li, Yuan & Han, Shumin, 2020. "Ultrafine cobalt nanoparticles supported on carbon nanospheres for hydrolysis of sodium borohydride," Renewable Energy, Elsevier, vol. 162(C), pages 345-354.
    3. Li, Fang & Arthur, Ernest Evans & La, Dahye & Li, Qiming & Kim, Hern, 2014. "Immobilization of CoCl2 (cobalt chloride) on PAN (polyacrylonitrile) composite nanofiber mesh filled with carbon nanotubes for hydrogen production from hydrolysis of NaBH4 (sodium borohydride)," Energy, Elsevier, vol. 71(C), pages 32-39.
    4. Ensafi, Ali A. & Jafari-Asl, Mehdi & Nabiyan, Afshin & Rezaei, B., 2016. "Ni3S2/ball-milled silicon flour as a bi-functional electrocatalyst for hydrogen and oxygen evolution reactions," Energy, Elsevier, vol. 116(P1), pages 392-401.
    5. Yu, Bendong & Fan, Miaomiao & Gu, Tao & Xia, Xiaokang & Li, Niansi, 2022. "The performance analysis of the photo-thermal driven synergetic catalytic PV-Trombe wall," Renewable Energy, Elsevier, vol. 192(C), pages 264-278.
    6. Lim, Dongjun & Lee, Boreum & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2022. "Projected cost analysis of hybrid methanol production from tri-reforming of methane integrated with various water electrolysis systems: Technical and economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    7. Chai, Y.J. & Dong, Y.M. & Meng, H.X. & Jia, Y.Y. & Shen, J. & Huang, Y.M. & Wang, N., 2014. "Hydrogen generation by aluminum corrosion in cobalt (II) chloride and nickel (II) chloride aqueous solution," Energy, Elsevier, vol. 68(C), pages 204-209.
    8. Cai, Haokun & Liu, Liping & Chen, Qiang & Lu, Ping & Dong, Jian, 2016. "Ni-polymer nanogel hybrid particles: A new strategy for hydrogen production from the hydrolysis of dimethylamine-borane and sodium borohydride," Energy, Elsevier, vol. 99(C), pages 129-135.
    9. Loghmani, Mohammad Hassan & Shojaei, Abdollah Fallah, 2014. "Hydrogen production through hydrolysis of sodium borohydride: Oleic acid stabilized Co–La–Zr–B nanoparticle as a novel catalyst," Energy, Elsevier, vol. 68(C), pages 152-159.
    10. Sánchez, Juan R. & Gutiérrez-Cano, José D. & Plaza-González, Pedro J. & Penaranda-Foix, Felipe L. & Catalá-Civera, José M., 2023. "Microwave calorimeter for dielectric and thermal analysis of materials," Energy, Elsevier, vol. 263(PD).
    11. Yang, Huayu & Yan, Bowen & Chen, Wei & Fan, Daming, 2023. "Prediction and innovation of sustainable continuous flow microwave processing based on numerical simulations: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    12. Yanping Chen & Yu Yao & Wantong Zhao & Lifeng Wang & Haitao Li & Jiangwei Zhang & Baojun Wang & Yi Jia & Riguang Zhang & Yan Yu & Jian Liu, 2023. "Precise solid-phase synthesis of CoFe@FeOx nanoparticles for efficient polysulfide regulation in lithium/sodium-sulfur batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Kim, Taegyu, 2014. "NaBH4 (sodium borohydride) hydrogen generator with a volume-exchange fuel tank for small unmanned aerial vehicles powered by a PEM (proton exchange membrane) fuel cell," Energy, Elsevier, vol. 69(C), pages 721-727.
    14. Mengyuan Zhang & Ying Gao & Chengmin Xie & Xiaolan Duan & Xiaoyan Lu & Kongliang Luo & Jian Ye & Xiaopeng Wang & Xinhua Gao & Qiang Niu & Pengfei Zhang & Sheng Dai, 2024. "Designing water resistant high entropy oxide materials," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    15. Xin, Yanbin & Wang, Quanli & Sun, Jiabao & Sun, Bing, 2022. "Plasma in aqueous methanol: Influence of plasma initiation mechanism on hydrogen production," Applied Energy, Elsevier, vol. 325(C).
    16. Tengfei Zhang & Peng Zheng & Jiajian Gao & Xiaolong Liu & Yongjun Ji & Junbo Tian & Yang Zou & Zhiyi Sun & Qiao Hu & Guokang Chen & Wenxing Chen & Xi Liu & Ziyi Zhong & Guangwen Xu & Tingyu Zhu & Fabi, 2024. "Simultaneously activating molecular oxygen and surface lattice oxygen on Pt/TiO2 for low-temperature CO oxidation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Shengcong Shang & Changsheng Du & Youxing Liu & Minghui Liu & Xinyu Wang & Wenqiang Gao & Ye Zou & Jichen Dong & Yunqi Liu & Jianyi Chen, 2022. "A one-dimensional conductive metal-organic framework with extended π-d conjugated nanoribbon layers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Kilinc, Dilek & Sahin, Omer, 2020. "High volume hydrogen evolution from KBH4 hydrolysis with palladium complex catalyst," Renewable Energy, Elsevier, vol. 161(C), pages 257-264.
    19. Yutao, Zhang & Yuanbo, Zhang & Yaqing, Li & Xueqiang, Shi & Yujie, Zhang, 2021. "Heat effects and kinetics of coal spontaneous combustion at various oxygen contents," Energy, Elsevier, vol. 234(C).
    20. Kou, Huaqin & Luo, Wenhua & Huang, Zhiyong & Sang, Ge & Meng, Daqiao & Zhang, Guanghui & Chen, Changan & Luo, Deli & Hu, Changwen, 2015. "Fabrication and experimental validation of a full-scale depleted uranium bed with thin double-layered annulus configuration for hydrogen isotopes recovery and delivery," Energy, Elsevier, vol. 90(P1), pages 588-594.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:333:y:2023:i:c:s0306261922017950. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.