IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v75y2014icp116-126.html
   My bibliography  Save this article

Experimental study on the influence of oxygen content in the combustion air on the combustion characteristics

Author

Listed:
  • Bělohradský, Petr
  • Skryja, Pavel
  • Hudák, Igor

Abstract

This study was focused on the experimental investigation of the very promising combustion technology called as the oxygen-enhanced combustion (OEC), which uses the oxidant containing higher proportion of oxygen than in the atmospheric air, i.e. more than 21%. The work investigated and compared the characteristics of two OEC methods, namely the premix enrichment and air-oxy/fuel combustion, when the overall oxygen concentration was varied from 21% to 46%. The combustion tests were performed with the experimental two-gas-staged burner of low-NOx type at the burner thermal input of 750 kW for two combustion regimes – one-staged and two-staged combustion. The oxygen concentration in the flue gas was maintained in the neighborhood of 3% vol. (on dry basis). The aim of tests was to assess the impact of the oxidant composition, type of OEC method and fuel-staging on the characteristic combustion parameters in detail. The investigated parameters included the concentration of nitrogen oxides (NOx) in the flue gas, flue gas temperature, heat flux to the combustion chamber wall, and lastly the stability, shape and dimensions of flame. It was observed that NOx emission is significantly lower when the air-oxy/fuel method is used compared to the premix enrichment method. Moreover, when the fuel was staged, NOx emission was below 120 mg/Nm3 at all investigated oxygen flow rates. Increasing oxygen concentration resulted in higher heating intensity due to higher concentrations of CO2 and H2O. The available heat at 46% O2 was higher by 20% compared with that at 21% O2.

Suggested Citation

  • Bělohradský, Petr & Skryja, Pavel & Hudák, Igor, 2014. "Experimental study on the influence of oxygen content in the combustion air on the combustion characteristics," Energy, Elsevier, vol. 75(C), pages 116-126.
  • Handle: RePEc:eee:energy:v:75:y:2014:i:c:p:116-126
    DOI: 10.1016/j.energy.2014.04.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214004393
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.04.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qiu, K. & Hayden, A.C.S., 2009. "Increasing the efficiency of radiant burners by using polymer membranes," Applied Energy, Elsevier, vol. 86(3), pages 349-354, March.
    2. Mondal, Monoj Kumar & Balsora, Hemant Kumar & Varshney, Prachi, 2012. "Progress and trends in CO2 capture/separation technologies: A review," Energy, Elsevier, vol. 46(1), pages 431-441.
    3. de Persis, Stéphanie & Foucher, Fabrice & Pillier, Laure & Osorio, Vladimiro & Gökalp, Iskender, 2013. "Effects of O2 enrichment and CO2 dilution on laminar methane flames," Energy, Elsevier, vol. 55(C), pages 1055-1066.
    4. Sánchez, Mario & Cadavid, Francisco & Amell, Andrés, 2013. "Experimental evaluation of a 20kW oxygen enhanced self-regenerative burner operated in flameless combustion mode," Applied Energy, Elsevier, vol. 111(C), pages 240-246.
    5. Lambert, Jean & Sorin, Mikhail & Paris, Jean, 1997. "Analysis of oxygen-enriched combustion for steam methane reforming (SMR)," Energy, Elsevier, vol. 22(8), pages 817-825.
    6. Abdelaal, Mohsen M. & Rabee, Basem A. & Hegab, Abdelrahman H., 2013. "Effect of adding oxygen to the intake air on a dual-fuel engine performance, emissions, and knock tendency," Energy, Elsevier, vol. 61(C), pages 612-620.
    7. Grönkvist, S. & Bryngelsson, M. & Westermark, M., 2006. "Oxygen efficiency with regard to carbon capture," Energy, Elsevier, vol. 31(15), pages 3220-3226.
    8. Horbaniuc, Bogdan & Marin, Ovidiu & Dumitraşcu, Gheorghe & Charon, Olivier, 2004. "Oxygen-enriched combustion in supercritical steam boilers," Energy, Elsevier, vol. 29(3), pages 427-448.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Prieler, Rene & Mayr, Bernhard & Demuth, Martin & Spoljaric, Davor & Hochenauer, Christoph, 2015. "Application of the steady flamelet model on a lab-scale and an industrial furnace for different oxygen concentrations," Energy, Elsevier, vol. 91(C), pages 451-464.
    2. Aliyu, Mansur & Abdelhafez, Ahmed & Nemitallah, Medhat A. & Said, Syed A.M. & Habib, Mohamed A., 2022. "Effects of adiabatic flame temperature on flames’ characteristics in a gas-turbine combustor," Energy, Elsevier, vol. 243(C).
    3. Fan, Weidong & Li, Yu & Guo, Qinghong & Chen, Can & Wang, Yong, 2017. "Coal-nitrogen release and NOx evolution in the oxidant-staged combustion of coal," Energy, Elsevier, vol. 125(C), pages 417-426.
    4. Li, Jun & Huang, Hongyu & Kobayashi, Noriyuki & He, Zhaohong & Osaka, Yugo & Zeng, Tao, 2015. "Numerical study on effect of oxygen content in combustion air on ammonia combustion," Energy, Elsevier, vol. 93(P2), pages 2053-2068.
    5. Miroslav Variny & Dominika Jediná & Patrik Furda, 2021. "Comment on Hamayun et al. Evaluation of Two-Column Air Separation Processes Based on Exergy Analysis. Energies 2020, 13 , 6361," Energies, MDPI, vol. 14(20), pages 1-8, October.
    6. Pavel Skryja & Igor Hudak & Jiří Bojanovsky & Zdeněk Jegla & Lubomír Korček, 2022. "Effects of Oxygen-Enhanced Combustion Methods on Combustion Characteristics of Non-Premixed Swirling Flames," Energies, MDPI, vol. 15(6), pages 1-21, March.
    7. Gaber, Christian & Schluckner, Christoph & Wachter, Philipp & Demuth, Martin & Hochenauer, Christoph, 2021. "Experimental study on the influence of the nitrogen concentration in the oxidizer on NOx and CO emissions during the oxy-fuel combustion of natural gas," Energy, Elsevier, vol. 214(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pavel Skryja & Igor Hudak & Jiří Bojanovsky & Zdeněk Jegla & Lubomír Korček, 2022. "Effects of Oxygen-Enhanced Combustion Methods on Combustion Characteristics of Non-Premixed Swirling Flames," Energies, MDPI, vol. 15(6), pages 1-21, March.
    2. Aliyu, Mansur & Abdelhafez, Ahmed & Nemitallah, Medhat A. & Said, Syed A.M. & Habib, Mohamed A., 2022. "Effects of adiabatic flame temperature on flames’ characteristics in a gas-turbine combustor," Energy, Elsevier, vol. 243(C).
    3. Chintala, V. & Subramanian, K.A., 2015. "Experimental investigations on effect of different compression ratios on enhancement of maximum hydrogen energy share in a compression ignition engine under dual-fuel mode," Energy, Elsevier, vol. 87(C), pages 448-462.
    4. Narukulla, Ramesh & Chaturvedi, Krishna Raghav & Ojha, Umaprasana & Sharma, Tushar, 2022. "Carbon dioxide capturing evaluation of polyacryloyl hydrazide solutions via rheological analysis for carbon utilization applications," Energy, Elsevier, vol. 241(C).
    5. Li, Jun & Huang, Hongyu & Kobayashi, Noriyuki & He, Zhaohong & Osaka, Yugo & Zeng, Tao, 2015. "Numerical study on effect of oxygen content in combustion air on ammonia combustion," Energy, Elsevier, vol. 93(P2), pages 2053-2068.
    6. Chintala, V. & Subramanian, K.A., 2017. "Experimental investigation of autoignition of hydrogen-air charge in a compression ignition engine under dual-fuel mode," Energy, Elsevier, vol. 138(C), pages 197-209.
    7. Gu, Zhenhua & Zhang, Ling & Lu, Chunqiang & Qing, Shan & Li, Kongzhai, 2020. "Enhanced performance of copper ore oxygen carrier by red mud modification for chemical looping combustion," Applied Energy, Elsevier, vol. 277(C).
    8. Kim, Soyoung & Choi, Sung-Deuk & Seo, Yongwon, 2017. "CO2 capture from flue gas using clathrate formation in the presence of thermodynamic promoters," Energy, Elsevier, vol. 118(C), pages 950-956.
    9. Majeda Khraisheh & Khadija M. Zadeh & Abedalkhader I. Alkhouzaam & Dorra Turki & Mohammad K. Hassan & Fares Al Momani & Syed M. J. Zaidi, 2020. "Characterization of polysulfone/diisopropylamine 1‐alkyl‐3‐methylimidazolium ionic liquid membranes: high pressure gas separation applications," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(4), pages 795-808, August.
    10. Magoua Mbeugang, Christian Fabrice & Li, Bin & Lin, Dan & Xie, Xing & Wang, Shuaijun & Wang, Shuang & Zhang, Shu & Huang, Yong & Liu, Dongjing & Wang, Qian, 2021. "Hydrogen rich syngas production from sorption enhanced gasification of cellulose in the presence of calcium oxide," Energy, Elsevier, vol. 228(C).
    11. Qiu, K. & Hayden, A.C.S., 2009. "Increasing the efficiency of radiant burners by using polymer membranes," Applied Energy, Elsevier, vol. 86(3), pages 349-354, March.
    12. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    13. Duarte, Jorge & Amador, Germán & Garcia, Jesus & Fontalvo, Armando & Vasquez Padilla, Ricardo & Sanjuan, Marco & Gonzalez Quiroga, Arturo, 2014. "Auto-ignition control in turbocharged internal combustion engines operating with gaseous fuels," Energy, Elsevier, vol. 71(C), pages 137-147.
    14. Hu, Xianzhong & Yu, Qingbo, 2018. "Effect of the elevated initial temperature on the laminar flame speeds of oxy-methane mixtures," Energy, Elsevier, vol. 147(C), pages 876-883.
    15. Xie, Heping & Wu, Yifan & Liu, Tao & Wang, Fuhuan & Chen, Bin & Liang, Bin, 2020. "Low-energy-consumption electrochemical CO2 capture driven by biomimetic phenazine derivatives redox medium," Applied Energy, Elsevier, vol. 259(C).
    16. Peydayesh, Mohammad & Mohammadi, Toraj & Bakhtiari, Omid, 2017. "Effective hydrogen purification from methane via polyimide Matrimid® 5218- Deca-dodecasil 3R type zeolite mixed matrix membrane," Energy, Elsevier, vol. 141(C), pages 2100-2107.
    17. Wang, Lei & Yao, Bowen & Xie, Haojun & Winterfeld, Philip H. & Kneafsey, Timothy J. & Yin, Xiaolong & Wu, Yu-Shu, 2017. "CO2 injection-induced fracturing in naturally fractured shale rocks," Energy, Elsevier, vol. 139(C), pages 1094-1110.
    18. Irani, Maryam & Jacobson, Andrew T. & Gasem, Khaled A.M. & Fan, Maohong, 2018. "Facilely synthesized porous polymer as support of poly(ethyleneimine) for effective CO2 capture," Energy, Elsevier, vol. 157(C), pages 1-9.
    19. Cheng, Zucheng & Li, Shaohua & Liu, Yu & Zhang, Yi & Ling, Zheng & Yang, Mingjun & Jiang, Lanlan & Song, Yongchen, 2022. "Post-combustion CO2 capture and separation in flue gas based on hydrate technology:A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    20. Alexander García-Mariaca & Eva Llera-Sastresa, 2021. "Review on Carbon Capture in ICE Driven Transport," Energies, MDPI, vol. 14(21), pages 1-30, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:75:y:2014:i:c:p:116-126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.