IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v158y2018icp1080-1091.html
   My bibliography  Save this article

Technical approach for the inclusion of superconducting magnetic energy storage in a smart city

Author

Listed:
  • Colmenar-Santos, Antonio
  • Molina-Ibáñez, Enrique-Luis
  • Rosales-Asensio, Enrique
  • López-Rey, África

Abstract

Smart grids are a concept which is evolving quickly with the implementation of renewable energies and concepts such as Distributed Generation (DG) and micro-grids. Energy storage systems play a very important role in smart grids. The characteristics of smart cities enhance the use of high power density storage systems, such as SMES systems. Because of this, we studied the possibility of adapting these systems in this kind of electrical topology by simulating the effects of an energy storage system with high power density (as SMES). An electrical and control adaptation circuit for storing energy was designed. The circuit consisted of three blocks. The first one was a passive filter LCL. The second was a converter system that allows rectifying of the signal when the system runs in charge mode but acts as an inverter when it changes to discharge mode. Finally, there is a chopper that allows the current levels to be modified. Throughout simulations, we have seen the possibility of controlling the energy supply so as the storage. This permits to adapt to different contingencies which may induce the wiring of the charge in the net, as well as different types of charges. Despite the technical contribution of this kind of systems in the Spanish electrical network, there are big obstacles that would prevent its inclusion in the network, such as the high cost of manufacturing and maintenance compared with other cheaper systems such as superconductors or the low energy density, which limits their use.

Suggested Citation

  • Colmenar-Santos, Antonio & Molina-Ibáñez, Enrique-Luis & Rosales-Asensio, Enrique & López-Rey, África, 2018. "Technical approach for the inclusion of superconducting magnetic energy storage in a smart city," Energy, Elsevier, vol. 158(C), pages 1080-1091.
  • Handle: RePEc:eee:energy:v:158:y:2018:i:c:p:1080-1091
    DOI: 10.1016/j.energy.2018.06.109
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218311745
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.06.109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Farhadi Kangarlu, Mohammad & Alizadeh Pahlavani, Mohammad Reza, 2014. "Cascaded multilevel converter based superconducting magnetic energy storage system for frequency control," Energy, Elsevier, vol. 70(C), pages 504-513.
    2. Sung Chul Kim, 2013. "Thermal Performance of Motor and Inverter in an Integrated Starter Generator System for a Hybrid Electric Vehicle," Energies, MDPI, vol. 6(11), pages 1-18, November.
    3. Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.
    4. Mariam, Lubna & Basu, Malabika & Conlon, Michael F., 2016. "Microgrid: Architecture, policy and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 477-489.
    5. Hemmati, Reza & Saboori, Hedayat, 2016. "Emergence of hybrid energy storage systems in renewable energy and transport applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 11-23.
    6. Chatzivasileiadi, Aikaterini & Ampatzi, Eleni & Knight, Ian, 2013. "Characteristics of electrical energy storage technologies and their applications in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 814-830.
    7. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    8. Li, Jianwei & Gee, Anthony M. & Zhang, Min & Yuan, Weijia, 2015. "Analysis of battery lifetime extension in a SMES-battery hybrid energy storage system using a novel battery lifetime model," Energy, Elsevier, vol. 86(C), pages 175-185.
    9. Colmenar-Santos, Antonio & Rosales-Asensio, Enrique & Borge-Diez, David & Blanes-Peiró, Jorge-Juan, 2016. "District heating and cogeneration in the EU-28: Current situation, potential and proposed energy strategy for its generalisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 621-639.
    10. Saboori, Hedayat & Hemmati, Reza & Jirdehi, Mehdi Ahmadi, 2015. "Reliability improvement in radial electrical distribution network by optimal planning of energy storage systems," Energy, Elsevier, vol. 93(P2), pages 2299-2312.
    11. Dargahi, Vahid & Sadigh, Arash Khoshkbar & Pahlavani, Mohammad Reza Alizadeh & Shoulaie, Abbas, 2012. "DC (direct current) voltage source reduction in stacked multicell converter based energy systems," Energy, Elsevier, vol. 46(1), pages 649-663.
    12. Zheng, Menglian & Meinrenken, Christoph J. & Lackner, Klaus S., 2015. "Smart households: Dispatch strategies and economic analysis of distributed energy storage for residential peak shaving," Applied Energy, Elsevier, vol. 147(C), pages 246-257.
    13. Ferreira, Helder Lopes & Garde, Raquel & Fulli, Gianluca & Kling, Wil & Lopes, Joao Pecas, 2013. "Characterisation of electrical energy storage technologies," Energy, Elsevier, vol. 53(C), pages 288-298.
    14. Emanuele Teodori & Pedro Pontes & Ana Moita & Anastasios Georgoulas & Marco Marengo & Antonio Moreira, 2017. "Sensible Heat Transfer during Droplet Cooling: Experimental and Numerical Analysis," Energies, MDPI, vol. 10(6), pages 1-27, June.
    15. Zhu, Jiahui & Qiu, Ming & Wei, Bin & Zhang, Hongjie & Lai, Xiaokang & Yuan, Weijia, 2013. "Design, dynamic simulation and construction of a hybrid HTS SMES (high-temperature superconducting magnetic energy storage systems) for Chinese power grid," Energy, Elsevier, vol. 51(C), pages 184-192.
    16. Jing Li & Yi Jiang & Shaozhen Yu & Fan Zhou, 2015. "Cooling Effect of Water Injection on a High-Temperature Supersonic Jet," Energies, MDPI, vol. 8(11), pages 1-17, November.
    17. Colmenar-Santos, Antonio & Molina-Ibáñez, Enrique-Luis & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Legislative and economic aspects for the inclusion of energy reserve by a superconducting magnetic energy storage: Application to the case of the Spanish electrical system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2455-2470.
    18. Zhu, Jiahui & Yuan, Weijia & Qiu, Ming & Wei, Bin & Zhang, Hongjie & Chen, Panpan & Yang, Yanfang & Zhang, Min & Huang, Xiaohua & Li, Zhenming, 2015. "Experimental demonstration and application planning of high temperature superconducting energy storage system for renewable power grids," Applied Energy, Elsevier, vol. 137(C), pages 692-698.
    19. Hasan, Nor Shahida & Hassan, Mohammad Yusri & Majid, Md Shah & Rahman, Hasimah Abdul, 2013. "Review of storage schemes for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 237-247.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Jing & Xu, Ying & Liao, Meng & Guo, Shuqiang & Li, Yuanyuan & Ren, Li & Su, Rongyu & Li, Shujian & Zhou, Xiao & Tang, Yuejin, 2019. "Integrated design method for superconducting magnetic energy storage considering the high frequency pulse width modulation pulse voltage on magnet," Applied Energy, Elsevier, vol. 248(C), pages 1-17.
    2. Li, Chao & Li, Gengyao & Xin, Ying & Li, Bin, 2022. "Mechanism of a novel mechanically operated contactless HTS energy converter," Energy, Elsevier, vol. 241(C).
    3. Abdel-Raheem Youssef & Mohamad Mallah & Abdelfatah Ali & Mostafa F. Shaaban & Essam E. M. Mohamed, 2023. "Enhancement of Microgrid Frequency Stability Based on the Combined Power-to-Hydrogen-to-Power Technology under High Penetration Renewable Units," Energies, MDPI, vol. 16(8), pages 1-18, April.
    4. Jiří Jaromír Klemeš & Petar Sabev Varbanov & Paweł Ocłoń & Hon Huin Chin, 2019. "Towards Efficient and Clean Process Integration: Utilisation of Renewable Resources and Energy-Saving Technologies," Energies, MDPI, vol. 12(21), pages 1-32, October.
    5. Chen, Xiaoyuan & Jiang, Shan & Chen, Yu & Lei, Yi & Zhang, Donghui & Zhang, Mingshun & Gou, Huayu & Shen, Boyang, 2022. "A 10 MW class data center with ultra-dense high-efficiency energy distribution: Design and economic evaluation of superconducting DC busbar networks," Energy, Elsevier, vol. 250(C).
    6. Shen, Boyang & Chen, Yu & Li, Chuanyue & Wang, Sheng & Chen, Xiaoyuan, 2021. "Superconducting fault current limiter (SFCL): Experiment and the simulation from finite-element method (FEM) to power/energy system software," Energy, Elsevier, vol. 234(C).
    7. Tatiana Tucunduva Philippi Cortese & Jairo Filho Sousa de Almeida & Giseli Quirino Batista & José Eduardo Storopoli & Aaron Liu & Tan Yigitcanlar, 2022. "Understanding Sustainable Energy in the Context of Smart Cities: A PRISMA Review," Energies, MDPI, vol. 15(7), pages 1-38, March.
    8. Chen, Xiaoyuan & Jiang, Shan & Chen, Yu & Zou, Zhice & Shen, Boyang & Lei, Yi & Zhang, Donghui & Zhang, Mingshun & Gou, Huayu, 2022. "Energy-saving superconducting power delivery from renewable energy source to a 100-MW-class data center," Applied Energy, Elsevier, vol. 310(C).
    9. Takele Ferede Agajie & Armand Fopah-Lele & Ahmed Ali & Isaac Amoussou & Baseem Khan & Mahmoud Elsisi & Wirnkar Basil Nsanyuy & Om Prakash Mahela & Roberto Marcelo Álvarez & Emmanuel Tanyi, 2023. "Integration of Superconducting Magnetic Energy Storage for Fast-Response Storage in a Hybrid Solar PV-Biogas with Pumped-Hydro Energy Storage Power Plant," Sustainability, MDPI, vol. 15(13), pages 1-30, July.
    10. Yang, Bo & Wang, Junting & Zhang, Xiaoshun & Yu, Lei & Shu, Hongchun & Yu, Tao & Sun, Liming, 2020. "Control of SMES systems in distribution networks with renewable energy integration: A perturbation estimation approach," Energy, Elsevier, vol. 202(C).
    11. Zhu, Lingfeng & Wang, Yinshun & Guo, Yuetong & Liu, Wei & Hu, Chengyang, 2023. "Current decay and compensation of a closed-loop HTS magnet in non-uniform magnetic fields based on electro-magneto-thermal semi-analytical analysis," Energy, Elsevier, vol. 277(C).
    12. D’ascenzo Fabrizio & Tantau Adrian & Savastano Marco & Şanta Ana-Maria Iulia, 2019. "New Energy Policies for Smart Cities - a Comparison among Smart Cities in the European Union," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 13(1), pages 1140-1149, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Colmenar-Santos, Antonio & Molina-Ibáñez, Enrique-Luis & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Legislative and economic aspects for the inclusion of energy reserve by a superconducting magnetic energy storage: Application to the case of the Spanish electrical system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2455-2470.
    2. Xu, Ying & Ren, Li & Zhang, Zhongping & Tang, Yuejin & Shi, Jing & Xu, Chen & Li, Jingdong & Pu, Dongsheng & Wang, Zhuang & Liu, Huajun & Chen, Lei, 2018. "Analysis of the loss and thermal characteristics of a SMES (Superconducting Magnetic Energy Storage) magnet with three practical operating conditions," Energy, Elsevier, vol. 143(C), pages 372-384.
    3. Bizon, Nicu, 2018. "Effective mitigation of the load pulses by controlling the battery/SMES hybrid energy storage system," Applied Energy, Elsevier, vol. 229(C), pages 459-473.
    4. Barra, P.H.A. & de Carvalho, W.C. & Menezes, T.S. & Fernandes, R.A.S. & Coury, D.V., 2021. "A review on wind power smoothing using high-power energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    5. Jacob, Ammu Susanna & Banerjee, Rangan & Ghosh, Prakash C., 2018. "Sizing of hybrid energy storage system for a PV based microgrid through design space approach," Applied Energy, Elsevier, vol. 212(C), pages 640-653.
    6. Barelli, L. & Bidini, G. & Bonucci, F. & Castellini, L. & Fratini, A. & Gallorini, F. & Zuccari, A., 2019. "Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants," Energy, Elsevier, vol. 173(C), pages 937-950.
    7. Bizon, Nicu, 2019. "Hybrid power sources (HPSs) for space applications: Analysis of PEMFC/Battery/SMES HPS under unknown load containing pulses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 14-37.
    8. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
    9. Hunt, Julian David & Zakeri, Behnam & Falchetta, Giacomo & Nascimento, Andreas & Wada, Yoshihide & Riahi, Keywan, 2020. "Mountain Gravity Energy Storage: A new solution for closing the gap between existing short- and long-term storage technologies," Energy, Elsevier, vol. 190(C).
    10. Hemmati, Reza & Saboori, Hedayat & Saboori, Saeid, 2016. "Stochastic risk-averse coordinated scheduling of grid integrated energy storage units in transmission constrained wind-thermal systems within a conditional value-at-risk framework," Energy, Elsevier, vol. 113(C), pages 762-775.
    11. Alanne, Kari & Cao, Sunliang, 2019. "An overview of the concept and technology of ubiquitous energy," Applied Energy, Elsevier, vol. 238(C), pages 284-302.
    12. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Amin, Muhammad Yasir, 2020. "Solar and wind power generation systems with pumped hydro storage: Review and future perspectives," Renewable Energy, Elsevier, vol. 148(C), pages 176-192.
    13. Morteza Zare Oskouei & Ayşe Aybike Şeker & Süleyman Tunçel & Emin Demirbaş & Tuba Gözel & Mehmet Hakan Hocaoğlu & Mehdi Abapour & Behnam Mohammadi-Ivatloo, 2022. "A Critical Review on the Impacts of Energy Storage Systems and Demand-Side Management Strategies in the Economic Operation of Renewable-Based Distribution Network," Sustainability, MDPI, vol. 14(4), pages 1-34, February.
    14. Ayotunde A. Adeyemo & Elisabetta Tedeschi, 2023. "Technology Suitability Assessment of Battery Energy Storage System for High-Energy Applications on Offshore Oil and Gas Platforms," Energies, MDPI, vol. 16(18), pages 1-38, September.
    15. Saboori, Hedayat & Hemmati, Reza, 2017. "Maximizing DISCO profit in active distribution networks by optimal planning of energy storage systems and distributed generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 365-372.
    16. Linda Barelli & Gianni Bidini & Fabio Bonucci & Luca Castellini & Simone Castellini & Andrea Ottaviano & Dario Pelosi & Alberto Zuccari, 2018. "Dynamic Analysis of a Hybrid Energy Storage System (H-ESS) Coupled to a Photovoltaic (PV) Plant," Energies, MDPI, vol. 11(2), pages 1-23, February.
    17. Kyriakopoulos, Grigorios L. & Arabatzis, Garyfallos, 2016. "Electrical energy storage systems in electricity generation: Energy policies, innovative technologies, and regulatory regimes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1044-1067.
    18. Kebede, Abraham Alem & Kalogiannis, Theodoros & Van Mierlo, Joeri & Berecibar, Maitane, 2022. "A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    19. Chong, Lee Wai & Wong, Yee Wan & Rajkumar, Rajprasad Kumar & Rajkumar, Rajpartiban Kumar & Isa, Dino, 2016. "Hybrid energy storage systems and control strategies for stand-alone renewable energy power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 174-189.
    20. Saboori, Hedayat & Hemmati, Reza & Ghiasi, Seyyed Mohammad Sadegh & Dehghan, Shahab, 2017. "Energy storage planning in electric power distribution networks – A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1108-1121.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:158:y:2018:i:c:p:1080-1091. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.