IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v68y2014icp712-721.html
   My bibliography  Save this article

Optimization design of the large temperature lift/drop multi-stage vertical absorption temperature transformer based on entransy dissipation method

Author

Listed:
  • Wang, Sheng
  • Xie, Xiaoyun
  • Jiang, Yi

Abstract

In the district heating system, the AHE (Absorption Heat Exchanger) can transfer the heat of the primary network with a large temperature drop to the secondary network with a small temperature lift in a heating station. Triangular heat transfer processes exist in a traditional AHE, and limit the performance of the system. In order to eliminate the mismatched heat transfer processes, the new ATT (Absorption Temperature Transformer) is suggested, which can separate the condensation or evaporation pressure into several levels. A new method based on entransy dissipation analysis is applied to conduct an optimization design to the ATT. Simulation results show that the minimum total KA (multiplication of the heat transfer coefficient by the heat transfer area) is obtained when entransy dissipation per transferred heat is uniformly distributed in the four basic components. The flow path of the ATT is also optimized. The best different flow direction is obtained which has the lowest flow mismatched coefficient. The total KA reduction becomes not obvious when the stage number is over 3. And the total KA reduction of a 4-stage ATT reached 28.9% compared to a 1-stage AHE.

Suggested Citation

  • Wang, Sheng & Xie, Xiaoyun & Jiang, Yi, 2014. "Optimization design of the large temperature lift/drop multi-stage vertical absorption temperature transformer based on entransy dissipation method," Energy, Elsevier, vol. 68(C), pages 712-721.
  • Handle: RePEc:eee:energy:v:68:y:2014:i:c:p:712-721
    DOI: 10.1016/j.energy.2014.02.074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214002084
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.02.074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Lun & Liu, Xiaohua & Jiang, Yi, 2013. "Application of entransy in the analysis of HVAC systems in buildings," Energy, Elsevier, vol. 53(C), pages 332-342.
    2. Rivera, W. & Huicochea, A. & Martínez, H. & Siqueiros, J. & Juárez, D. & Cadenas, E., 2011. "Exergy analysis of an experimental heat transformer for water purification," Energy, Elsevier, vol. 36(1), pages 320-327.
    3. Li, Yan & Fu, Lin & Zhang, Shigang & Zhao, Xiling, 2011. "A new type of district heating system based on distributed absorption heat pumps," Energy, Elsevier, vol. 36(7), pages 4570-4576.
    4. Ji, Jun & Ishida, Masaru, 1999. "Behavior of a two-stage absorption heat transformer combining latent and sensible heat exchange modes," Applied Energy, Elsevier, vol. 62(4), pages 267-281, April.
    5. Kilic, Muhsin & Kaynakli, Omer, 2007. "Second law-based thermodynamic analysis of water-lithium bromide absorption refrigeration system," Energy, Elsevier, vol. 32(8), pages 1505-1512.
    6. Gebreslassie, Berhane H. & Medrano, Marc & Boer, Dieter, 2010. "Exergy analysis of multi-effect water–LiBr absorption systems: From half to triple effect," Renewable Energy, Elsevier, vol. 35(8), pages 1773-1782.
    7. Chen, Qun & Xu, Yun-Chao, 2012. "An entransy dissipation-based optimization principle for building central chilled water systems," Energy, Elsevier, vol. 37(1), pages 571-579.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yemao & Xia, Jianjun & Fang, Hao & Su, Yingbo & Jiang, Yi, 2016. "Case study on industrial surplus heat of steel plants for district heating in Northern China," Energy, Elsevier, vol. 102(C), pages 397-405.
    2. Zhang, Chenghu & Li, Yaping, 2017. "Thermodynamic analysis on theoretical models of cycle combined heat exchange process: The reversible heat exchange process," Energy, Elsevier, vol. 124(C), pages 565-578.
    3. Xie, Xiaoyun & Jiang, Yi, 2017. "Absorption heat exchangers for long-distance heat transportation," Energy, Elsevier, vol. 141(C), pages 2242-2250.
    4. Hu, Tianle & Xie, Xiaoyun & Jiang, Yi, 2017. "Simulation research on a variable-lift absorption cycle and its application in waste heat recovery of combined heat and power system," Energy, Elsevier, vol. 140(P1), pages 912-921.
    5. Yang, Fusheng & Wu, Zhen & Liu, Shengzhe & Zhang, Yang & Wang, Geoff & Zhang, Zaoxiao & Wang, Yuqi, 2018. "Theoretical formulation and performance analysis of a novel hydride heat Pump(HHP) integrated heat recovery system," Energy, Elsevier, vol. 163(C), pages 208-220.
    6. Wang, Xiaoyin & Zhao, Xiling & Fu, Lin, 2018. "Entransy analysis of secondary network flow distribution in absorption heat exchanger," Energy, Elsevier, vol. 147(C), pages 428-439.
    7. Li, Yemao & Pan, Wenbiao & Xia, Jianjun & Jiang, Yi, 2019. "Combined heat and water system for long-distance heat transportation," Energy, Elsevier, vol. 172(C), pages 401-408.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yılmaz, İbrahim Halil & Saka, Kenan & Kaynakli, Omer, 2016. "A thermodynamic evaluation on high pressure condenser of double effect absorption refrigeration system," Energy, Elsevier, vol. 113(C), pages 1031-1041.
    2. Wu, Wei & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2014. "Absorption heating technologies: A review and perspective," Applied Energy, Elsevier, vol. 130(C), pages 51-71.
    3. Men, Yiyu & Liu, Xiaohua & Zhang, Tao, 2020. "Analytical solutions of heat and mass transfer process in combined gas-water heat exchanger applied for waste heat recovery," Energy, Elsevier, vol. 206(C).
    4. Parham, Kiyan & Khamooshi, Mehrdad & Tematio, Daniel Boris Kenfack & Yari, Mortaza & Atikol, Uğur, 2014. "Absorption heat transformers – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 430-452.
    5. Abdelhay, AymanO. & Fath, HassanE.S. & Nada, S.A., 2020. "Solar driven polygeneration system for power, desalination and cooling," Energy, Elsevier, vol. 198(C).
    6. Donnellan, Philip & Byrne, Edmond & Oliveira, Jorge & Cronin, Kevin, 2014. "First and second law multidimensional analysis of a triple absorption heat transformer (TAHT)," Applied Energy, Elsevier, vol. 113(C), pages 141-151.
    7. Janghorban Esfahani, I. & Yoo, C.K., 2013. "Exergy analysis and parametric optimization of three power and fresh water cogeneration systems using refrigeration chillers," Energy, Elsevier, vol. 59(C), pages 340-355.
    8. Hassan, H.Z. & Mohamad, A.A., 2012. "A review on solar cold production through absorption technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5331-5348.
    9. Donnellan, Philip & Cronin, Kevin & Byrne, Edmond, 2015. "Recycling waste heat energy using vapour absorption heat transformers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1290-1304.
    10. Xu, Yun-Chao & Chen, Qun, 2013. "A theoretical global optimization method for vapor-compression refrigeration systems based on entransy theory," Energy, Elsevier, vol. 60(C), pages 464-473.
    11. Sun, Fangtian & Fu, Lin & Sun, Jian & Zhang, Shigang, 2014. "A new waste heat district heating system with combined heat and power (CHP) based on ejector heat exchangers and absorption heat pumps," Energy, Elsevier, vol. 69(C), pages 516-524.
    12. Liu, Zijian & Lu, Ding & Tao, Shen & Chen, Rundong & Gong, Maoqiong, 2024. "Experimental study on using 85 °C low-grade heat to generate <120 °C steam by a temperature-distributed absorption heat transformer," Energy, Elsevier, vol. 299(C).
    13. Nkwetta, Dan Nchelatebe & Sandercock, Jim, 2016. "A state-of-the-art review of solar air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1351-1366.
    14. Angrisani, Giovanni & Roselli, Carlo & Sasso, Maurizio, 2015. "Experimental assessment of the energy performance of a hybrid desiccant cooling system and comparison with other air-conditioning technologies," Applied Energy, Elsevier, vol. 138(C), pages 533-545.
    15. Anvari, Simin & Mahian, Omid & Taghavifar, Hadi & Wongwises, Somchai & Desideri, Umberto, 2020. "4E analysis of a modified multigeneration system designed for power, heating/cooling, and water desalination," Applied Energy, Elsevier, vol. 270(C).
    16. Shunyong Yin & Jianjun Xia & Yi Jiang, 2020. "Characteristics Analysis of the Heat-to-Power Ratio from the Supply and Demand Sides of Cities in Northern China," Energies, MDPI, vol. 13(1), pages 1-14, January.
    17. Arat, Halit & Arslan, Oguz, 2017. "Exergoeconomic analysis of district heating system boosted by the geothermal heat pump," Energy, Elsevier, vol. 119(C), pages 1159-1170.
    18. Muhsin Kılıç, 2022. "Evaluation of Combined Thermal–Mechanical Compression Systems: A Review for Energy Efficient Sustainable Cooling," Sustainability, MDPI, vol. 14(21), pages 1-38, October.
    19. Guelpa, Elisa & Verda, Vittorio, 2019. "Compact physical model for simulation of thermal networks," Energy, Elsevier, vol. 175(C), pages 998-1008.
    20. Jonathan Ibarra-Bahena & Rosenberg J. Romero, 2014. "Performance of Different Experimental Absorber Designs in Absorption Heat Pump Cycle Technologies: A Review," Energies, MDPI, vol. 7(2), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:68:y:2014:i:c:p:712-721. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.