IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v37y2012i1p571-579.html
   My bibliography  Save this article

An entransy dissipation-based optimization principle for building central chilled water systems

Author

Listed:
  • Chen, Qun
  • Xu, Yun-Chao

Abstract

The recently developed entransy theory is introduced in this paper to tackle the heat transfer processes in building central chilled water systems so as to improve their energy efficiency. We first divide the irreversible heat transfer processes into four categories: (1) air mixing processes; (2) heat transfer processes between chilled water and air; (3) chilled water mixing processes; and (4) heat transfer processes between chilled water and refrigerant. The formulas of entransy dissipation rates for each irreversible process are derived, and then the total entransy dissipation rate in the whole chilled water systems is obtained, which connects the geometrical structures of each heat exchanger and the operating parameters of each fluid directly to the demands of users and the supply of refrigerating unit. Based on the formula of entransy dissipation rate together with the conditional extremum method in mathematics, two optimization equation groups are deduced theoretically. Simultaneously solving such equation groups will easily find the optimal central chilled water system with the highest energy efficiency. Finally, a simple building central chilled water system with two users is taken as an example to illustrate the applications of the newly proposed optimization principle.

Suggested Citation

  • Chen, Qun & Xu, Yun-Chao, 2012. "An entransy dissipation-based optimization principle for building central chilled water systems," Energy, Elsevier, vol. 37(1), pages 571-579.
  • Handle: RePEc:eee:energy:v:37:y:2012:i:1:p:571-579
    DOI: 10.1016/j.energy.2011.10.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211007146
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.10.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Zhenjun & Wang, Shengwei, 2011. "Supervisory and optimal control of central chiller plants using simplified adaptive models and genetic algorithm," Applied Energy, Elsevier, vol. 88(1), pages 198-211, January.
    2. Chen, Qun & Yang, Kangding & Wang, Moran & Pan, Ning & Guo, Zeng-Yuan, 2010. "A new approach to analysis and optimization of evaporative cooling system I: Theory," Energy, Elsevier, vol. 35(6), pages 2448-2454.
    3. Chen, Qun & Wang, Moran & Pan, Ning & Guo, Zeng-Yuan, 2009. "Optimization principles for convective heat transfer," Energy, Elsevier, vol. 34(9), pages 1199-1206.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Yun-Chao & Chen, Qun, 2013. "A theoretical global optimization method for vapor-compression refrigeration systems based on entransy theory," Energy, Elsevier, vol. 60(C), pages 464-473.
    2. Xu, Yun-Chao & Chen, Qun & Guo, Zeng-Yuan, 2015. "Entransy dissipation-based constraint for optimization of heat exchanger networks in thermal systems," Energy, Elsevier, vol. 86(C), pages 696-708.
    3. Wei Shao & Shuo Wang & Wenpu Wang & Kun Shao & Qi Xiao & Zheng Cui, 2023. "Experiment and Simulation on a Refrigeration Ventilation System for Deep Metal Mines," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    4. Xingbo Yao & Bart J. Dewancker & Yuang Guo & Shuo Han & Juan Xu, 2020. "Study on Passive Ventilation and Cooling Strategies for Cold Lanes and Courtyard Houses—A Case Study of Rural Traditional Village in Shaanxi, China," Sustainability, MDPI, vol. 12(20), pages 1-36, October.
    5. Men, Yiyu & Liu, Xiaohua & Zhang, Tao, 2020. "Analytical solutions of heat and mass transfer process in combined gas-water heat exchanger applied for waste heat recovery," Energy, Elsevier, vol. 206(C).
    6. Ibáñez, Guillermo & López, Aracely & Pantoja, Joel & Moreira, Joel & Reyes, Juan A., 2013. "Optimum slip flow based on the minimization of entropy generation in parallel plate microchannels," Energy, Elsevier, vol. 50(C), pages 143-149.
    7. Wang, Sheng & Xie, Xiaoyun & Jiang, Yi, 2014. "Optimization design of the large temperature lift/drop multi-stage vertical absorption temperature transformer based on entransy dissipation method," Energy, Elsevier, vol. 68(C), pages 712-721.
    8. Chen, Qun & Fu, Rong-Huan & Xu, Yun-Chao, 2015. "Electrical circuit analogy for heat transfer analysis and optimization in heat exchanger networks," Applied Energy, Elsevier, vol. 139(C), pages 81-92.
    9. Chen, Qun & Wang, Yi-Fei & Xu, Yun-Chao, 2015. "A thermal resistance-based method for the optimal design of central variable water/air volume chiller systems," Applied Energy, Elsevier, vol. 139(C), pages 119-130.
    10. Guo, Jiangfeng & Huai, Xiulan, 2012. "Optimization design of recuperator in a chemical heat pump system based on entransy dissipation theory," Energy, Elsevier, vol. 41(1), pages 335-343.
    11. Chen, Qun & Xu, Yun-Chao & Hao, Jun-Hong, 2014. "An optimization method for gas refrigeration cycle based on the combination of both thermodynamics and entransy theory," Applied Energy, Elsevier, vol. 113(C), pages 982-989.
    12. Li, Tailu & Fu, Wencheng & Zhu, Jialing, 2014. "An integrated optimization for organic Rankine cycle based on entransy theory and thermodynamics," Energy, Elsevier, vol. 72(C), pages 561-573.
    13. Zhang, Lun & Liu, Xiaohua & Jiang, Yi, 2013. "Application of entransy in the analysis of HVAC systems in buildings," Energy, Elsevier, vol. 53(C), pages 332-342.
    14. Xuefeng, Liu & Jinping, Liu & Zhitao, Lu & Kongzu, Xing & Yuebang, Mai, 2015. "Diversity of energy-saving control strategy for a parallel chilled water pump based on variable differential pressure control in an air-conditioning system," Energy, Elsevier, vol. 88(C), pages 718-733.
    15. Guo, Jiangfeng & Huai, Xiulan, 2012. "The application of entransy theory in optimization design of Isopropanol–Acetone–Hydrogen chemical heat pump," Energy, Elsevier, vol. 43(1), pages 355-360.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Mingtian, 2012. "Variational principles in terms of entransy for heat transfer," Energy, Elsevier, vol. 44(1), pages 973-977.
    2. Wang, Huiru & Liu, Zhenyu & Wu, Huiying, 2017. "Entransy dissipation-based thermal resistance optimization of slab LHTES system with multiple PCMs arranged in a 2D array," Energy, Elsevier, vol. 138(C), pages 739-751.
    3. Chen, Qun & Pan, Ning & Guo, Zeng-Yuan, 2011. "A new approach to analysis and optimization of evaporative cooling system II: Applications," Energy, Elsevier, vol. 36(5), pages 2890-2898.
    4. Chen, Qun & Xu, Yun-Chao & Hao, Jun-Hong, 2014. "An optimization method for gas refrigeration cycle based on the combination of both thermodynamics and entransy theory," Applied Energy, Elsevier, vol. 113(C), pages 982-989.
    5. Yuan, Fang & Chen, Qun, 2012. "A global optimization method for evaporative cooling systems based on the entransy theory," Energy, Elsevier, vol. 42(1), pages 181-191.
    6. Guo, Jiangfeng & Huai, Xiulan, 2012. "Optimization design of recuperator in a chemical heat pump system based on entransy dissipation theory," Energy, Elsevier, vol. 41(1), pages 335-343.
    7. Guo, Jiangfeng & Huai, Xiulan, 2012. "The application of entransy theory in optimization design of Isopropanol–Acetone–Hydrogen chemical heat pump," Energy, Elsevier, vol. 43(1), pages 355-360.
    8. Xu, Mingtian, 2011. "The thermodynamic basis of entransy and entransy dissipation," Energy, Elsevier, vol. 36(7), pages 4272-4277.
    9. Xiaoqing Wei & Nianping Li & Jinqing Peng & Jianlin Cheng & Jinhua Hu & Meng Wang, 2017. "Modeling and Optimization of a CoolingTower-Assisted Heat Pump System," Energies, MDPI, vol. 10(5), pages 1-18, May.
    10. Duan, Zhiyin & Zhan, Changhong & Zhang, Xingxing & Mustafa, Mahmud & Zhao, Xudong & Alimohammadisagvand, Behrang & Hasan, Ala, 2012. "Indirect evaporative cooling: Past, present and future potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6823-6850.
    11. Juan-Carlos Fraile & Julio San-José & Ana González-Alonso, 2014. "A Boiler Room in a 600-Bed Hospital Complex: Study, Analysis, and Implementation of Energy Efficiency Improvements," Energies, MDPI, vol. 7(5), pages 1-22, May.
    12. Sun, Yubiao & Guan, Zhiqiang & Gurgenci, Hal & Wang, Jianyong & Dong, Peixin & Hooman, Kamel, 2019. "Spray cooling system design and optimization for cooling performance enhancement of natural draft dry cooling tower in concentrated solar power plants," Energy, Elsevier, vol. 168(C), pages 273-284.
    13. Tsang, S.W. & Jim, C.Y., 2011. "Theoretical evaluation of thermal and energy performance of tropical green roofs," Energy, Elsevier, vol. 36(5), pages 3590-3598.
    14. Wang, Chengshan & Jiao, Bingqi & Guo, Li & Tian, Zhe & Niu, Jide & Li, Siwei, 2016. "Robust scheduling of building energy system under uncertainty," Applied Energy, Elsevier, vol. 167(C), pages 366-376.
    15. Wei-Tao Wu & Mehrdad Massoudi & Hongbin Yan, 2017. "Heat Transfer and Flow of Nanofluids in a Y-Type Intersection Channel with Multiple Pulsations: A Numerical Study," Energies, MDPI, vol. 10(4), pages 1-18, April.
    16. Xia, Lei & Ma, Zhenjun & Kokogiannakis, Georgios & Wang, Shugang & Gong, Xuemei, 2018. "A model-based optimal control strategy for ground source heat pump systems with integrated solar photovoltaic thermal collectors," Applied Energy, Elsevier, vol. 228(C), pages 1399-1412.
    17. Ge, Gaoming & Xiao, Fu & Xu, Xinhua, 2011. "Model-based optimal control of a dedicated outdoor air-chilled ceiling system using liquid desiccant and membrane-based total heat recovery," Applied Energy, Elsevier, vol. 88(11), pages 4180-4190.
    18. Huang, Sen & Zuo, Wangda & Sohn, Michael D., 2016. "Amelioration of the cooling load based chiller sequencing control," Applied Energy, Elsevier, vol. 168(C), pages 204-215.
    19. Liu, Xuefeng & Huang, Bin & Zheng, Yulan, 2023. "Control strategy for dynamic operation of multiple chillers under random load constraints," Energy, Elsevier, vol. 270(C).
    20. Wang, Xinli & Cai, Wenjian & Yin, Xiaohong, 2017. "A global optimized operation strategy for energy savings in liquid desiccant air conditioning using self-adaptive differential evolutionary algorithm," Applied Energy, Elsevier, vol. 187(C), pages 410-423.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:37:y:2012:i:1:p:571-579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.