IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v60y2013icp464-473.html
   My bibliography  Save this article

A theoretical global optimization method for vapor-compression refrigeration systems based on entransy theory

Author

Listed:
  • Xu, Yun-Chao
  • Chen, Qun

Abstract

The vapor-compression refrigeration systems have been one of the essential energy conversion systems for humankind and exhausting huge amounts of energy nowadays. Surrounding the energy efficiency promotion of the systems, there are lots of effectual optimization methods but mainly relied on engineering experience and computer simulations rather than theoretical analysis due to the complex and vague physical essence. We attempt to propose a theoretical global optimization method based on in-depth physical analysis for the involved physical processes, i.e. heat transfer analysis for condenser and evaporator, through introducing the entransy theory and thermodynamic analysis for compressor and expansion valve. The integration of heat transfer and thermodynamic analyses forms the overall physical optimization model for the systems to describe the relation between all the unknown parameters and known conditions, which makes theoretical global optimization possible. With the aid of the mathematical conditional extremum solutions, an optimization equation group and the optimal configuration of all the unknown parameters are analytically obtained. Eventually, via the optimization of a typical vapor-compression refrigeration system with various working conditions to minimize the total heat transfer area of heat exchangers, the validity and superior of the newly proposed optimization method is proved.

Suggested Citation

  • Xu, Yun-Chao & Chen, Qun, 2013. "A theoretical global optimization method for vapor-compression refrigeration systems based on entransy theory," Energy, Elsevier, vol. 60(C), pages 464-473.
  • Handle: RePEc:eee:energy:v:60:y:2013:i:c:p:464-473
    DOI: 10.1016/j.energy.2013.08.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213006919
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.08.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Göktun, Selahattin, 1999. "Optimal performance of an irreversible, heat engine-driven, combined vapor compression and absorption refrigerator," Applied Energy, Elsevier, vol. 62(2), pages 67-79, February.
    2. Chen, Lingen & Sun, Fengrui & Wu, Chih, 2004. "Optimal allocation of heat-exchanger area for refrigeration and air-conditioning plants," Applied Energy, Elsevier, vol. 77(3), pages 339-354, March.
    3. Yuan, Fang & Chen, Qun, 2012. "A global optimization method for evaporative cooling systems based on the entransy theory," Energy, Elsevier, vol. 42(1), pages 181-191.
    4. Gholap, A.K. & Khan, J.A., 2007. "Design and multi-objective optimization of heat exchangers for refrigerators," Applied Energy, Elsevier, vol. 84(12), pages 1226-1239, December.
    5. Chen, Qun & Xu, Yun-Chao, 2012. "An entransy dissipation-based optimization principle for building central chilled water systems," Energy, Elsevier, vol. 37(1), pages 571-579.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Yun-Chao & Chen, Qun & Guo, Zeng-Yuan, 2015. "Entransy dissipation-based constraint for optimization of heat exchanger networks in thermal systems," Energy, Elsevier, vol. 86(C), pages 696-708.
    2. Xin, Yong-Lin & Zhao, Tian & Sun, Qing-Han & Chen, Qun, 2024. "An efficient yet accurate optimization algorithm for thermal systems integrating heat current method and generalized Benders decomposition," Energy, Elsevier, vol. 304(C).
    3. Edoardo Di Mattia & Agostino Gambarotta & Emanuela Marzi & Mirko Morini & Costanza Saletti, 2022. "Predictive Controller for Refrigeration Systems Aimed to Electrical Load Shifting and Energy Storage," Energies, MDPI, vol. 15(19), pages 1-22, September.
    4. Xu, Sheng-Zhi & Guo, Zeng-Yuan, 2021. "Entransy transfer analysis methodology for energy conversion systems operating with thermodynamic cycles," Energy, Elsevier, vol. 224(C).
    5. Chen, Xi & Chen, Qun & Chen, Hong & Xu, Ying-Gen & Zhao, Tian & Hu, Kang & He, Ke-Lun, 2019. "Heat current method for analysis and optimization of heat recovery-based power generation systems," Energy, Elsevier, vol. 189(C).
    6. Wei, Huimin & Wu, Tao & Ge, Zhihua & Yang, Lijun & Du, Xiaoze, 2019. "Entransy analysis optimization of cooling water flow distribution in a dry cooling tower of power plant under summer crosswinds," Energy, Elsevier, vol. 166(C), pages 1229-1240.
    7. Li, Xia & Chen, Qun & Chen, Xi & He, Ke-Lun & Hao, Jun-Hong, 2020. "Graph theory-based heat current analysis method for supercritical CO2 power generation system," Energy, Elsevier, vol. 194(C).
    8. Janghorban Esfahani, Iman & Kang, Yong Tae & Yoo, ChangKyoo, 2014. "A high efficient combined multi-effect evaporation–absorption heat pump and vapor-compression refrigeration part 1: Energy and economic modeling and analysis," Energy, Elsevier, vol. 75(C), pages 312-326.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Qun & Xu, Yun-Chao & Hao, Jun-Hong, 2014. "An optimization method for gas refrigeration cycle based on the combination of both thermodynamics and entransy theory," Applied Energy, Elsevier, vol. 113(C), pages 982-989.
    2. Li, Tailu & Fu, Wencheng & Zhu, Jialing, 2014. "An integrated optimization for organic Rankine cycle based on entransy theory and thermodynamics," Energy, Elsevier, vol. 72(C), pages 561-573.
    3. Zhang, Lun & Liu, Xiaohua & Jiang, Yi, 2013. "Application of entransy in the analysis of HVAC systems in buildings," Energy, Elsevier, vol. 53(C), pages 332-342.
    4. Xu, Yun-Chao & Chen, Qun & Guo, Zeng-Yuan, 2015. "Entransy dissipation-based constraint for optimization of heat exchanger networks in thermal systems," Energy, Elsevier, vol. 86(C), pages 696-708.
    5. Manjunath, K. & Kaushik, S.C., 2014. "Second law thermodynamic study of heat exchangers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 348-374.
    6. Chen, Qun & Fu, Rong-Huan & Xu, Yun-Chao, 2015. "Electrical circuit analogy for heat transfer analysis and optimization in heat exchanger networks," Applied Energy, Elsevier, vol. 139(C), pages 81-92.
    7. Luo, Xianglong & Yi, Zhitong & Zhang, Bingjian & Mo, Songping & Wang, Chao & Song, Mengjie & Chen, Ying, 2017. "Mathematical modelling and optimization of the liquid separation condenser used in organic Rankine cycle," Applied Energy, Elsevier, vol. 185(P2), pages 1309-1323.
    8. Cui, X. & Islam, M.R. & Mohan, B. & Chua, K.J., 2016. "Theoretical analysis of a liquid desiccant based indirect evaporative cooling system," Energy, Elsevier, vol. 95(C), pages 303-312.
    9. Nunes, T.K. & Vargas, J.V.C. & Ordonez, J.C. & Shah, D. & Martinho, L.C.S., 2015. "Modeling, simulation and optimization of a vapor compression refrigeration system dynamic and steady state response," Applied Energy, Elsevier, vol. 158(C), pages 540-555.
    10. Yu Zhai & Xu Zhao & Zhifeng Dong, 2022. "Research on Performance Optimization of Gravity Heat Pipe for Mine Return Air," Energies, MDPI, vol. 15(22), pages 1-14, November.
    11. Stephen Ntiri Asomani & Jianping Yuan & Longyan Wang & Desmond Appiah & Kofi Asamoah Adu-Poku, 2020. "The Impact of Surrogate Models on the Multi-Objective Optimization of Pump-As-Turbine (PAT)," Energies, MDPI, vol. 13(9), pages 1-29, May.
    12. Chen, Qun & Wang, Yi-Fei & Xu, Yun-Chao, 2015. "A thermal resistance-based method for the optimal design of central variable water/air volume chiller systems," Applied Energy, Elsevier, vol. 139(C), pages 119-130.
    13. Guo, Jiangfeng & Huai, Xiulan, 2012. "Optimization design of recuperator in a chemical heat pump system based on entransy dissipation theory," Energy, Elsevier, vol. 41(1), pages 335-343.
    14. Zhang, Lun & Wei, Hongyang & Zhang, Xiaosong, 2017. "Theoretical analysis of heat and mass transfer characteristics of a counter-flow packing tower and liquid desiccant dehumidification systems based on entransy theory," Energy, Elsevier, vol. 141(C), pages 661-672.
    15. Wang, Sheng & Xie, Xiaoyun & Jiang, Yi, 2014. "Optimization design of the large temperature lift/drop multi-stage vertical absorption temperature transformer based on entransy dissipation method," Energy, Elsevier, vol. 68(C), pages 712-721.
    16. Ngouateu Wouagfack, Paiguy Armand & Tchinda, Réné, 2013. "Finite-time thermodynamics optimization of absorption refrigeration systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 524-536.
    17. Cheng, Wen-Long & Yuan, Xu-Dong, 2013. "Numerical analysis of a novel household refrigerator with shape-stabilized PCM (phase change material) heat storage condensers," Energy, Elsevier, vol. 59(C), pages 265-276.
    18. Men, Yiyu & Liu, Xiaohua & Zhang, Tao, 2020. "Analytical solutions of heat and mass transfer process in combined gas-water heat exchanger applied for waste heat recovery," Energy, Elsevier, vol. 206(C).
    19. Bahadori, Alireza, 2011. "Simple method for estimation of effectiveness in one tube pass and one shell pass counter-flow heat exchangers," Applied Energy, Elsevier, vol. 88(11), pages 4191-4196.
    20. Rishikesh Sharma & Dipti Prasad Mishra & Marek Wasilewski & Lakhbir Singh Brar, 2023. "Application of Response Surface Methodology and Artificial Neural Network to Optimize the Curved Trapezoidal Winglet Geometry for Enhancing the Performance of a Fin-and-Tube Heat Exchanger," Energies, MDPI, vol. 16(10), pages 1-30, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:60:y:2013:i:c:p:464-473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.