IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v299y2024ics0360544224012647.html
   My bibliography  Save this article

Experimental study on using 85 °C low-grade heat to generate <120 °C steam by a temperature-distributed absorption heat transformer

Author

Listed:
  • Liu, Zijian
  • Lu, Ding
  • Tao, Shen
  • Chen, Rundong
  • Gong, Maoqiong

Abstract

A great amount of below 100 °C low-grade heat exists in wasted heat and renewable energy fields while generating above 100 °C steam consumes a huge quantity of energy in production. Using below 100 °C low-grade heat to generate steam could save energy and reduce carbon dioxide emissions. This work experimentally studies an ammonia-water absorption heat transformer that increases temperatures of 85 °C low-grade heat to generate below 120 °C steam. A temperature-distributed generation process is introduced, which can enlarge the temperature utilization spans of heat sources. A prototype is built, and performance is investigated. Results show that the prototype successfully uses 85 °C low-grade heat for steam generation. The output temperature fluctuation is ±0.4K, which meets the demand for most industrial applications. In addition, the prototype COP increases with the strong solution concentration in the experiment range, and the maximum COP is 0.33. System performance improvement results from the rise in ammonia generation quantity. However, the disadvantage of rising strong solution concentration is the absorption pressure increment, bringing the challenge for heat exchanger design. The maximum temperature lift of the prototype is 34.7K. Moreover, the performance of prototypes with different sizes is predicted based on the experimental data. The predicted practical COP of the 200 kW prototype is 0.36 when the output temperature is 119.7 °C, close to the simulation value of 0.38.

Suggested Citation

  • Liu, Zijian & Lu, Ding & Tao, Shen & Chen, Rundong & Gong, Maoqiong, 2024. "Experimental study on using 85 °C low-grade heat to generate <120 °C steam by a temperature-distributed absorption heat transformer," Energy, Elsevier, vol. 299(C).
  • Handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224012647
    DOI: 10.1016/j.energy.2024.131491
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224012647
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131491?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Parham, Kiyan & Khamooshi, Mehrdad & Tematio, Daniel Boris Kenfack & Yari, Mortaza & Atikol, Uğur, 2014. "Absorption heat transformers – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 430-452.
    2. Cudok, Falk & Giannetti, Niccolò & Ciganda, José L. Corrales & Aoyama, Jun & Babu, P. & Coronas, Alberto & Fujii, Tatsuo & Inoue, Naoyuki & Saito, Kiyoshi & Yamaguchi, Seiichi & Ziegler, Felix, 2021. "Absorption heat transformer - state-of-the-art of industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    3. Ji, Jun & Ishida, Masaru, 1999. "Behavior of a two-stage absorption heat transformer combining latent and sensible heat exchange modes," Applied Energy, Elsevier, vol. 62(4), pages 267-281, April.
    4. Donnellan, Philip & Byrne, Edmond & Oliveira, Jorge & Cronin, Kevin, 2014. "First and second law multidimensional analysis of a triple absorption heat transformer (TAHT)," Applied Energy, Elsevier, vol. 113(C), pages 141-151.
    5. Yang, Sheng & Yang, Siyu & Wang, Yifan & Qian, Yu, 2017. "Low grade waste heat recovery with a novel cascade absorption heat transformer," Energy, Elsevier, vol. 130(C), pages 461-472.
    6. Sun, Jian & Fu, Lin & Zhang, Shigang, 2012. "A review of working fluids of absorption cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1899-1906.
    7. Liu, Zijian & Lu, Ding & Shen, Tao & Cheng, Rui & Chen, Rundong & Gong, Maoqiong, 2023. "Improving heat supply of ammonia-water absorption heat transformer by enlarging heat source utilization temperature span," Energy, Elsevier, vol. 280(C).
    8. Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Zijian & Lu, Ding & Shen, Tao & Cheng, Rui & Chen, Rundong & Gong, Maoqiong, 2023. "Improving heat supply of ammonia-water absorption heat transformer by enlarging heat source utilization temperature span," Energy, Elsevier, vol. 280(C).
    2. Amaris, Carlos & Vallès, Manel & Bourouis, Mahmoud, 2018. "Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review," Applied Energy, Elsevier, vol. 231(C), pages 826-853.
    3. Xu, Qingyu & Lu, Ding & Chen, Gaofei & Guo, Hao & Dong, Xueqiang & Zhao, Yanxing & Shen, Jun & Gong, Maoqiong, 2019. "Experimental study on an absorption refrigeration system driven by temperature-distributed heat sources," Energy, Elsevier, vol. 170(C), pages 471-479.
    4. Cudok, Falk & Giannetti, Niccolò & Ciganda, José L. Corrales & Aoyama, Jun & Babu, P. & Coronas, Alberto & Fujii, Tatsuo & Inoue, Naoyuki & Saito, Kiyoshi & Yamaguchi, Seiichi & Ziegler, Felix, 2021. "Absorption heat transformer - state-of-the-art of industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    5. Donnellan, Philip & Cronin, Kevin & Byrne, Edmond, 2015. "Recycling waste heat energy using vapour absorption heat transformers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1290-1304.
    6. Poulidis, Lefteris & Prousalis, Thomas & Seferlis, Panos & Papadopoulos, Athanasios I., 2024. "Vapor absorption, compression and cascade heat pumps for carbon capture plants: Multi-criteria analysis and techno-economic assessment with different working fluids," Energy, Elsevier, vol. 306(C).
    7. Lee, Yee-Ting & Hong, Sihui & Chien, Liang-Han & Lin, Chih-Jer & Yang, An-Shik, 2020. "Heat transfer and pressure drop of film condensation in a horizontal minitube for HFO1234yf refrigerant," Applied Energy, Elsevier, vol. 274(C).
    8. Mikhail Tokarev, 2019. "A Double-Bed Adsorptive Heat Transformer for Upgrading Ambient Heat: Design and First Tests," Energies, MDPI, vol. 12(21), pages 1-14, October.
    9. Yang, Jiangming & Wu, Huijun & Xu, Xinhua & Huang, Gongsheng & Xu, Tao & Guo, Sitong & Liang, Yuying, 2019. "Numerical and experimental study on the thermal performance of aerogel insulating panels for building energy efficiency," Renewable Energy, Elsevier, vol. 138(C), pages 445-457.
    10. Wang, Meng & Infante Ferreira, Carlos A., 2017. "Absorption heat pump cycles with NH3 – ionic liquid working pairs," Applied Energy, Elsevier, vol. 204(C), pages 819-830.
    11. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    12. Ashouri, Mahyar & Chhokar, Callum & Bahrami, Majid, 2024. "A novel microgroove-based absorber for sorption heat transformation systems: Analytical modeling and experimental investigation," Energy, Elsevier, vol. 307(C).
    13. Ramadan, Mohamad & Murr, Rabih & Khaled, Mahmoud & Olabi, Abdul Ghani, 2018. "Mixed numerical - Experimental approach to enhance the heat pump performance by drain water heat recovery," Energy, Elsevier, vol. 149(C), pages 1010-1021.
    14. Sun, Fangtian & Fu, Lin & Sun, Jian & Zhang, Shigang, 2014. "A new ejector heat exchanger based on an ejector heat pump and a water-to-water heat exchanger," Applied Energy, Elsevier, vol. 121(C), pages 245-251.
    15. Gkouletsos, Dimitris & Papadopoulos, Athanasios I. & Seferlis, Panos & Hassan, Ibrahim, 2019. "Systematic modeling under uncertainty of single, double and triple effect absorption refrigeration processes," Energy, Elsevier, vol. 183(C), pages 262-278.
    16. Kadam, Sambhaji T. & Gkouletsos, Dimitris & Hassan, Ibrahim & Rahman, Mohammad Azizur & Kyriakides, Alexios-Spyridon & Papadopoulos, Athanasios I. & Seferlis, Panos, 2020. "Investigation of binary, ternary and quaternary mixtures across solution heat exchanger used in absorption refrigeration and process modifications to improve cycle performance," Energy, Elsevier, vol. 198(C).
    17. Jovet, Yoann & Lefèvre, Frédéric & Laurent, Alexis & Clausse, Marc, 2022. "Combined energetic, economic and climate change assessment of heat pumps for industrial waste heat recovery," Applied Energy, Elsevier, vol. 313(C).
    18. Mohamed Zbair & Simona Bennici, 2021. "Survey Summary on Salts Hydrates and Composites Used in Thermochemical Sorption Heat Storage: A Review," Energies, MDPI, vol. 14(11), pages 1-33, May.
    19. Fumey, B. & Weber, R. & Baldini, L., 2019. "Sorption based long-term thermal energy storage – Process classification and analysis of performance limitations: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 57-74.
    20. Benjamin Fumey & Luca Baldini, 2021. "Static Temperature Guideline for Comparative Testing of Sorption Heat Storage Systems for Building Application," Energies, MDPI, vol. 14(13), pages 1-15, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224012647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.