IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v195y2020ics036054422030058x.html
   My bibliography  Save this article

Energy and exergy analyses of a novel hybrid system consisting of a phosphoric acid fuel cell and a triple-effect compression–absorption refrigerator with [mmim]DMP/CH3OH as working fluid

Author

Listed:
  • Chen, Wei
  • Xu, Chenbin
  • Wu, Haibo
  • Bai, Yang
  • Li, Zoulu
  • Zhang, Bin

Abstract

Energy and exergy analyses were conducted on a proposed hybrid system consisting of a phosphoric acid fuel cell (PAFC) and a triple-effect compression–absorption refrigerator with [mmim]DMP/CH3OH as working fluid (HFCAR). The HFCAR system was modeled and simulated based on the current density model of PAFC, isentropic efficiency model of assisted compressor, and mass and energy conservation model of the compression–absorption refrigerator. For the basic design condition, the detailed operating parameters of each status point, energy conservation, temperature difference, and total thermal conductance of each component were simulated and discussed. For the variable conditions, the effects of electrical current density, PAFC temperature, and compression ratios on 16 key operating parameters were simulated and analyzed. A critical electrical current density was proposed. Under condition of critical current density, HFCAR system works as a cooling system with the largest cooling capacity. The variation characteristics of the critical electrical current density were studied. The exergy losses of each component were simulated and analyzed. The PAFC efficiency and heat transfer characteristic of certain components should be optimized to improve the thermal performance of the HFCAR system.

Suggested Citation

  • Chen, Wei & Xu, Chenbin & Wu, Haibo & Bai, Yang & Li, Zoulu & Zhang, Bin, 2020. "Energy and exergy analyses of a novel hybrid system consisting of a phosphoric acid fuel cell and a triple-effect compression–absorption refrigerator with [mmim]DMP/CH3OH as working fluid," Energy, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:energy:v:195:y:2020:i:c:s036054422030058x
    DOI: 10.1016/j.energy.2020.116951
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422030058X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.116951?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leonzio, Grazia, 2017. "Solar systems integrated with absorption heat pumps and thermal energy storages: state of art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 492-505.
    2. Ghouse, M. & Abaoud, H. & Al-Boeiz, A. & AbdulHadi, M., 1998. "Development of a 1 kW Phosphoric Acid Fuel Cell stack," Applied Energy, Elsevier, vol. 60(3), pages 153-167, July.
    3. Sujatha, I. & Venkatarathnam, G., 2017. "Performance of a vapour absorption heat transformer operating with ionic liquids and ammonia," Energy, Elsevier, vol. 141(C), pages 924-936.
    4. Moreno-Quintanar, G. & Rivera, W. & Best, R., 2012. "Comparison of the experimental evaluation of a solar intermittent refrigeration system for ice production operating with the mixtures NH3/LiNO3 and NH3/LiNO3/H2O," Renewable Energy, Elsevier, vol. 38(1), pages 62-68.
    5. Moreno, Daniel & Ferro, Víctor R. & de Riva, Juan & Santiago, Rubén & Moya, Cristian & Larriba, Marcos & Palomar, José, 2018. "Absorption refrigeration cycles based on ionic liquids: Refrigerant/absorbent selection by thermodynamic and process analysis," Applied Energy, Elsevier, vol. 213(C), pages 179-194.
    6. Yokozeki, A. & Shiflett, Mark B., 2007. "Vapor-liquid equilibria of ammonia + ionic liquid mixtures," Applied Energy, Elsevier, vol. 84(12), pages 1258-1273, December.
    7. Chen, Xiaohang & Wang, Yuan & Zhao, Yingru & Zhou, Yinghui, 2016. "A study of double functions and load matching of a phosphoric acid fuel cell/heat-driven refrigerator hybrid system," Energy, Elsevier, vol. 101(C), pages 359-365.
    8. Minea, Alina Adriana & Murshed, S. M. Sohel, 2018. "A review on development of ionic liquid based nanofluids and their heat transfer behavior," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 584-599.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ji, Qiang & Wang, Yikai & Yin, Yonggao & Wang, Mu & Che, Chunwen & Cao, Bowen & Chen, Wanhe, 2023. "Cooling performance of compression-absorption cascade system with novel ternary ionic-liquid working pair," Energy, Elsevier, vol. 278(PB).
    2. Zhou, Xinpei & Chen, Wei & Zhang, Bin, 2022. "Proposed hybrid system with integrated SOFC, gas turbine, and compressor-assisted absorption refrigerator using [mmim]DMP/CH3OH as working fluid," Energy, Elsevier, vol. 261(PB).
    3. Chen, Wei & Chenbin, Xu & Wu, Haibo & Li, Zoulu & Zhang, Bin & Yan, He, 2021. "Thermal analysis and optimization of combined cold and power system with integrated phosphoric acid fuel cell and two-stage compression–absorption refrigerator at low evaporation temperature," Energy, Elsevier, vol. 216(C).
    4. Abdelkareem, Mohammad Ali & Sayed, Enas Taha & Nakagawa, Nobuyoshi, 2020. "Significance of diffusion layers on the performance of liquid and vapor feed passive direct methanol fuel cells," Energy, Elsevier, vol. 209(C).
    5. Ji, Qiang & Han, Zongwei & Li, Xiuming & Yang, Lingyan, 2022. "Energy and economic evaluation of the air source hybrid heating system driven by off-peak electric thermal storage in cold regions," Renewable Energy, Elsevier, vol. 182(C), pages 69-85.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Xi & Xu, Shiming & Jiang, Mengnan, 2018. "Development of bubble absorption refrigeration technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3468-3482.
    2. Wei, Chen & Hao, Xu & Tianjiao, Bi & Bin, Zhang & Yan, He, 2022. "Numerical investigation and optimization of a proposed heat-driven compression/absorption hybrid refrigeration system combined with a power cycle," Energy, Elsevier, vol. 246(C).
    3. Chen, Wei & Chenbin, Xu & Wu, Haibo & Li, Zoulu & Zhang, Bin & Yan, He, 2021. "Thermal analysis and optimization of combined cold and power system with integrated phosphoric acid fuel cell and two-stage compression–absorption refrigerator at low evaporation temperature," Energy, Elsevier, vol. 216(C).
    4. Zhang, Xiao & Cai, Liang & Chen, Tao & Liu, Jian & Zhang, Xiaosong, 2023. "Thermodynamic screening and analysis of ionic liquids as absorbents paired with low-GWP refrigerants in absorption refrigeration systems," Energy, Elsevier, vol. 282(C).
    5. Wang, Meng & Infante Ferreira, Carlos A., 2017. "Absorption heat pump cycles with NH3 – ionic liquid working pairs," Applied Energy, Elsevier, vol. 204(C), pages 819-830.
    6. Asfand, Faisal & Bourouis, Mahmoud, 2015. "A review of membrane contactors applied in absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 173-191.
    7. Kadam, Sambhaji T. & Gkouletsos, Dimitris & Hassan, Ibrahim & Rahman, Mohammad Azizur & Kyriakides, Alexios-Spyridon & Papadopoulos, Athanasios I. & Seferlis, Panos, 2020. "Investigation of binary, ternary and quaternary mixtures across solution heat exchanger used in absorption refrigeration and process modifications to improve cycle performance," Energy, Elsevier, vol. 198(C).
    8. Park, Heejin & Jung, Yoonju & Park, Chungi & Lee, Jaeseung & Ghasemi, Masoomeh & Alam, Afroz & Kim, Hyeonjin & Kim, Jinwook & Park, Sojin & Choi, Kyungshik & You, Hyunseok & Ju, Hyunchul, 2023. "Performance evaluation and economic feasibility of a PAFC-based multi-energy hub system in South Korea," Energy, Elsevier, vol. 278(PB).
    9. Chen, Xiaohang & Wang, Yuan & Zhao, Yingru & Zhou, Yinghui, 2016. "A study of double functions and load matching of a phosphoric acid fuel cell/heat-driven refrigerator hybrid system," Energy, Elsevier, vol. 101(C), pages 359-365.
    10. Zhang, Shaozhi & Luo, Jielin & Xu, Yiyang & Chen, Guangming & Wang, Qin, 2021. "Thermodynamic analysis of a combined cycle of ammonia-based battery and absorption refrigerator," Energy, Elsevier, vol. 220(C).
    11. Swati Anindita Sarker & Shouyang Wang & K M Mehedi Adnan & Muhammad Khalid Anser & Zeraibi Ayoub & Thu Hau Ho & Riffat Ara Zannat Tama & Anna Trunina & Md Mahmudul Hoque, 2020. "Economic Viability and Socio-Environmental Impacts of Solar Home Systems for Off-Grid Rural Electrification in Bangladesh," Energies, MDPI, vol. 13(3), pages 1-15, February.
    12. Dong, Li & Zheng, Danxing & Nie, Nan & Li, Yun, 2012. "Performance prediction of absorption refrigeration cycle based on the measurements of vapor pressure and heat capacity of H2O+[DMIM]DMP system," Applied Energy, Elsevier, vol. 98(C), pages 326-332.
    13. Gbenou, Tadagbe Roger Sylvanus & Fopah-Lele, Armand & Wang, Kejian, 2022. "Macroscopic and microscopic investigations of low-temperature thermochemical heat storage reactors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    14. Bi, Yuehong & Qin, Lifeng & Guo, Jimeng & Li, Hongyan & Zang, Gaoli, 2020. "Performance analysis of solar air conditioning system based on the independent-developed solar parabolic trough collector," Energy, Elsevier, vol. 196(C).
    15. Fan, Yi & Zhao, Xudong & Li, Jing & Cheng, Yuanda & Badiei, Ali & Zhou, Jinzhi & Yu, Min & Li, Guiqiang & Du, Zhenyu & Ji, Jie & Zhu, Zishang & Ma, Xiaoli & Bai, Huifeng & Myers, Steve, 2020. "Operational performance of a novel fast-responsive heat storage/exchanging unit (HSEU) for solar heating systems," Renewable Energy, Elsevier, vol. 151(C), pages 137-151.
    16. Rivera-Lugo, Yazmín Y. & Salazar-Gastélum, Moisés I. & López-Rosas, Deisly M. & Reynoso-Soto, Edgar A. & Pérez-Sicairos, Sergio & Velraj, Samgopiraj & Flores-Hernández, José R. & Félix-Navarro, Rosa M, 2018. "Effect of template, reaction time and platinum concentration in the synthesis of PtCu/CNT catalyst for PEMFC applications," Energy, Elsevier, vol. 148(C), pages 561-570.
    17. Wu, Wei & Wang, Xiaoyu & Xia, Man & Dou, Yiping & Yin, Zhengyu & Wang, Jun & Lu, Ping, 2020. "A novel composite PCM for seasonal thermal energy storage of solar water heating system," Renewable Energy, Elsevier, vol. 161(C), pages 457-469.
    18. Chugh, Devesh & Gluesenkamp, Kyle R. & Abu-Heiba, Ahmad & Alipanah, Morteza & Fazeli, Abdy & Rode, Richard & Schmid, Michael & Patel, Viral K. & Moghaddam, Saeed, 2019. "Experimental evaluation of a semi-open membrane-based absorption heat pump system utilizing ionic liquids," Applied Energy, Elsevier, vol. 239(C), pages 919-927.
    19. Houcheng Zhang & Jiatang Wang & Jiapei Zhao & Fu Wang & He Miao & Jinliang Yuan, 2019. "Performance Analysis of a Hybrid System Consisting of a Molten Carbonate Direct Carbon Fuel Cell and an Absorption Refrigerator," Energies, MDPI, vol. 12(3), pages 1-13, January.
    20. Alvaro A. S. Lima & Gustavo de N. P. Leite & Alvaro A. V. Ochoa & Carlos A. C. dos Santos & José A. P. da Costa & Paula S. A. Michima & Allysson M. A. Caldas, 2020. "Absorption Refrigeration Systems Based on Ammonia as Refrigerant Using Different Absorbents: Review and Applications," Energies, MDPI, vol. 14(1), pages 1-41, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:195:y:2020:i:c:s036054422030058x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.