IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v61y2013icp332-344.html
   My bibliography  Save this article

Intermittent absorption refrigeration system equipped with an economizer

Author

Listed:
  • Said, S.A.M.
  • El-Shaarawi, M.A.I.
  • Siddiqui, M.U.

Abstract

Conservation of useful form of energy, i.e. electricity to be used in the production sector rather than consumption sector is becoming a priority in the KSA (Kingdom of Saudi Arabia). One of the consumption sectors which utilize a large amount of electrical energy is the air-conditioning and refrigeration sector. Improving the performance of refrigeration and air-conditioning systems and utilizing solar energy in powering such systems will contribute to significant conservation of electrical energy in the kingdom of Saudi-Arabia. Hence, the objective of the present study is to improve the performance of intermittent solar absorption refrigeration system. To achieve this objective, the design of a conventional intermittent system has been modified by introducing an economizer into the system. The analysis of the modified design system indicated an increase of 20% in the coefficient of performance of the system.

Suggested Citation

  • Said, S.A.M. & El-Shaarawi, M.A.I. & Siddiqui, M.U., 2013. "Intermittent absorption refrigeration system equipped with an economizer," Energy, Elsevier, vol. 61(C), pages 332-344.
  • Handle: RePEc:eee:energy:v:61:y:2013:i:c:p:332-344
    DOI: 10.1016/j.energy.2013.09.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213007858
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.09.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Meng & Zhang, Na, 2007. "Proposal and analysis of a novel ammonia–water cycle for power and refrigeration cogeneration," Energy, Elsevier, vol. 32(6), pages 961-970.
    2. De Francisco, A. & Illanes, R. & Torres, J.L. & Castillo, M. & De Blas, M. & Prieto, E. & Garcı́a, A., 2002. "Development and testing of a prototype of low-power water–ammonia absorption equipment for solar energy applications," Renewable Energy, Elsevier, vol. 25(4), pages 537-544.
    3. Chidambaram, L.A. & Ramana, A.S. & Kamaraj, G. & Velraj, R., 2011. "Review of solar cooling methods and thermal storage options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3220-3228, August.
    4. Moreno-Quintanar, G. & Rivera, W. & Best, R., 2012. "Comparison of the experimental evaluation of a solar intermittent refrigeration system for ice production operating with the mixtures NH3/LiNO3 and NH3/LiNO3/H2O," Renewable Energy, Elsevier, vol. 38(1), pages 62-68.
    5. Padilla, Ricardo Vasquez & Demirkaya, Gökmen & Goswami, D. Yogi & Stefanakos, Elias & Rahman, Muhammad M., 2010. "Analysis of power and cooling cogeneration using ammonia-water mixture," Energy, Elsevier, vol. 35(12), pages 4649-4657.
    6. Ibrahim, O.M., 1996. "Design considerations for ammonia-water rankine cycle," Energy, Elsevier, vol. 21(10), pages 835-841.
    7. Rogdakis, E.D. & Antonopoulos, K.A., 1992. "Performance of a low- temperature NH3 H2O absorption-refrigeration system," Energy, Elsevier, vol. 17(5), pages 477-484.
    8. Medrano, M. & Bourouis, M. & Coronas, A., 2001. "Double-lift absorption refrigeration cycles driven by low-temperature heat sources using organic fluid mixtures as working pairs," Applied Energy, Elsevier, vol. 68(2), pages 173-185, February.
    9. J. K. Tangka & N. E. Kamnang, 2006. "Development of a simple intermittent absorption solar refrigeration system," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 1(2), pages 127-138, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Janghorban Esfahani, Iman & Kang, Yong Tae & Yoo, ChangKyoo, 2014. "A high efficient combined multi-effect evaporation–absorption heat pump and vapor-compression refrigeration part 1: Energy and economic modeling and analysis," Energy, Elsevier, vol. 75(C), pages 312-326.
    2. Siddiqui, M.U. & Said, S.A.M., 2015. "A review of solar powered absorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 93-115.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siddiqui, M.U. & Said, S.A.M., 2015. "A review of solar powered absorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 93-115.
    2. Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.
    3. Usón, Sergio & Kostowski, Wojciech J. & Stanek, Wojciech & Gazda, Wiesław, 2015. "Thermoecological cost of electricity, heat and cold generated in a trigeneration module fuelled with selected fossil and renewable fuels," Energy, Elsevier, vol. 92(P3), pages 308-319.
    4. Hassan, H.Z. & Mohamad, A.A., 2012. "A review on solar cold production through absorption technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5331-5348.
    5. Chen, Yi & Han, Wei & Jin, Hongguang, 2017. "Proposal and analysis of a novel heat-driven absorption–compression refrigeration system at low temperatures," Applied Energy, Elsevier, vol. 185(P2), pages 2106-2116.
    6. Li, Xinguo & Zhang, Qilin & Li, Xiajie, 2013. "A Kalina cycle with ejector," Energy, Elsevier, vol. 54(C), pages 212-219.
    7. Abed, Azher M. & Alghoul, M.A. & Sopian, K. & Majdi, Hasan Sh. & Al-Shamani, Ali Najah & Muftah, A.F., 2017. "Enhancement aspects of single stage absorption cooling cycle: A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1010-1045.
    8. Cabrera, F.J. & Fernández-García, A. & Silva, R.M.P. & Pérez-García, M., 2013. "Use of parabolic trough solar collectors for solar refrigeration and air-conditioning applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 103-118.
    9. Zare, V. & Mahmoudi, S.M.S. & Yari, M. & Amidpour, M., 2012. "Thermoeconomic analysis and optimization of an ammonia–water power/cooling cogeneration cycle," Energy, Elsevier, vol. 47(1), pages 271-283.
    10. Hong, D.L. & Chen, G.M. & Tang, L.M. & He, Y.J., 2011. "Simulation research on an EAX (Evaporator-Absorber-Exchange) absorption refrigeration cycle," Energy, Elsevier, vol. 36(1), pages 94-98.
    11. Sun, Liuli & Han, Wei & Jing, Xuye & Zheng, Danxing & Jin, Hongguang, 2013. "A power and cooling cogeneration system using mid/low-temperature heat source," Applied Energy, Elsevier, vol. 112(C), pages 886-897.
    12. Li, You-Rong & Wang, Xiao-Qiong & Li, Xiao-Ping & Wang, Jian-Ning, 2014. "Performance analysis of a novel power/refrigerating combined-system driven by the low-grade waste heat using different refrigerants," Energy, Elsevier, vol. 73(C), pages 543-553.
    13. Fan, Y. & Luo, L. & Souyri, B., 2007. "Review of solar sorption refrigeration technologies: Development and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1758-1775, October.
    14. Chen, Yi & Han, Wei & Jin, Hongguang, 2015. "An absorption–compression refrigeration system driven by a mid-temperature heat source for low-temperature applications," Energy, Elsevier, vol. 91(C), pages 215-225.
    15. Barkhordarian, Orbel & Behbahaninia, Ali & Bahrampoury, Rasool, 2017. "A novel ammonia-water combined power and refrigeration cycle with two different cooling temperature levels," Energy, Elsevier, vol. 120(C), pages 816-826.
    16. Wu, Wei & Shi, Wenxing & Wang, Jian & Wang, Baolong & Li, Xianting, 2016. "Experimental investigation on NH3–H2O compression-assisted absorption heat pump (CAHP) for low temperature heating under lower driving sources," Applied Energy, Elsevier, vol. 176(C), pages 258-271.
    17. Wu, Wei & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2014. "An overview of ammonia-based absorption chillers and heat pumps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 681-707.
    18. Yu, Zeting & Han, Jitian & Liu, Hai & Zhao, Hongxia, 2014. "Theoretical study on a novel ammonia–water cogeneration system with adjustable cooling to power ratios," Applied Energy, Elsevier, vol. 122(C), pages 53-61.
    19. Du, S. & Wang, R.Z. & Xia, Z.Z., 2015. "Graphical analysis on internal heat recovery of a single stage ammonia–water absorption refrigeration system," Energy, Elsevier, vol. 80(C), pages 687-694.
    20. Wang, Meng & Infante Ferreira, Carlos A., 2017. "Absorption heat pump cycles with NH3 – ionic liquid working pairs," Applied Energy, Elsevier, vol. 204(C), pages 819-830.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:61:y:2013:i:c:p:332-344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.