IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v79y2015icp398-406.html
   My bibliography  Save this article

A thermodynamic comparison between organic Rankine and Kalina cycles for waste heat recovery from the Gas Turbine-Modular Helium Reactor

Author

Listed:
  • Zare, V.
  • Mahmoudi, S.M.S.

Abstract

A comparative thermodynamic analysis and optimization is presented for waste heat recovery from the Gas Turbine-Modular Helium Reactor (GT-MHR) employing organic Rankine cycle (ORC) and Kalina cycle (KC). Thermodynamic models are developed for the stand alone GT-MHR and the two proposed combined cycles and the effects on the performances of the cycles are investigated of decision variables. The cycles' performances are then optimized based on the first and second law of thermodynamics. The results showed that, employing ORC is more appropriate than KC for GT-MHR waste heat recovery. The first and second law efficiencies of the combined GT-MHR/ORC are higher than those of the combined GT-MHR/KC. In addition, the helium mass flow rate in the combined GT-MHR/ORC is significantly lower than that in the combined GT-MHR/KC. Moreover, the high-pressure level of the ORC is extremely lower than that of the KC under optimized conditions. Furthermore, the superheated vapor at the ORC turbine exit avoids droplet erosion and allows for reliable operation while the stream exiting the KC turbine is a two-phase flow.

Suggested Citation

  • Zare, V. & Mahmoudi, S.M.S., 2015. "A thermodynamic comparison between organic Rankine and Kalina cycles for waste heat recovery from the Gas Turbine-Modular Helium Reactor," Energy, Elsevier, vol. 79(C), pages 398-406.
  • Handle: RePEc:eee:energy:v:79:y:2015:i:c:p:398-406
    DOI: 10.1016/j.energy.2014.11.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421401281X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.11.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zare, V. & Mahmoudi, S.M.S. & Yari, M., 2013. "An exergoeconomic investigation of waste heat recovery from the Gas Turbine-Modular Helium Reactor (GT-MHR) employing an ammonia–water power/cooling cycle," Energy, Elsevier, vol. 61(C), pages 397-409.
    2. Yari, Mortaza, 2010. "Exergetic analysis of various types of geothermal power plants," Renewable Energy, Elsevier, vol. 35(1), pages 112-121.
    3. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    4. Wang, Jiangfeng & Dai, Yiping & Gao, Lin, 2009. "Exergy analyses and parametric optimizations for different cogeneration power plants in cement industry," Applied Energy, Elsevier, vol. 86(6), pages 941-948, June.
    5. Wang, Z.Q. & Zhou, N.J. & Guo, J. & Wang, X.Y., 2012. "Fluid selection and parametric optimization of organic Rankine cycle using low temperature waste heat," Energy, Elsevier, vol. 40(1), pages 107-115.
    6. Padilla, Ricardo Vasquez & Demirkaya, Gökmen & Goswami, D. Yogi & Stefanakos, Elias & Rahman, Muhammad M., 2010. "Analysis of power and cooling cogeneration using ammonia-water mixture," Energy, Elsevier, vol. 35(12), pages 4649-4657.
    7. Chen, Huijuan & Goswami, D. Yogi & Stefanakos, Elias K., 2010. "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3059-3067, December.
    8. Zhang, Xinxin & He, Maogang & Zhang, Ying, 2012. "A review of research on the Kalina cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5309-5318.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Guokun & Ji, Dongxu & Qin, Yanzhou, 2023. "Geothermal-solar energy system integrated with hydrogen production and utilization modules for power supply-demand balancing," Energy, Elsevier, vol. 283(C).
    2. Ghaebi, Hadi & Parikhani, Towhid & Rostamzadeh, Hadi & Farhang, Behzad, 2017. "Thermodynamic and thermoeconomic analysis and optimization of a novel combined cooling and power (CCP) cycle by integrating of ejector refrigeration and Kalina cycles," Energy, Elsevier, vol. 139(C), pages 262-276.
    3. Dawahdeh, Ahmad I. & Al-Nimr, Moh'd A., 2022. "Power generation by integrating a thermally regenerative electrochemical cycle (TREC) with a biofuel stove," Energy, Elsevier, vol. 251(C).
    4. Tan, Luzhi & Dong, Xiaoming & Gong, Zhiqiang & Wang, Mingtao, 2017. "Investigation on performance of an integrated SOFC-GE-KC power generation system using gaseous fuel from biomass gasification," Renewable Energy, Elsevier, vol. 107(C), pages 448-461.
    5. Maheshwari, Mayank & Singh, Onkar, 2020. "Thermo-economic analysis of combined cycle configurations with intercooling and reheating," Energy, Elsevier, vol. 205(C).
    6. Mao, Yi & Zhang, Lei & Wan, Li & Stanford, Russell J., 2022. "Proposal and assessment of a novel power and freshwater production system for the heat recovery of diesel engine," Energy, Elsevier, vol. 240(C).
    7. Zare, V., 2016. "Exergoeconomic analysis with reliability and availability considerations of a nuclear energy-based combined cycle power plant," Energy, Elsevier, vol. 96(C), pages 187-196.
    8. Varma, G.V. Pradeep & Srinivas, T., 2017. "Power generation from low temperature heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 402-414.
    9. Tesio, U. & Guelpa, E. & Verda, V., 2022. "Comparison of sCO2 and He Brayton cycles integration in a Calcium-Looping for Concentrated Solar Power," Energy, Elsevier, vol. 247(C).
    10. Eller, Tim & Heberle, Florian & Brüggemann, Dieter, 2017. "Second law analysis of novel working fluid pairs for waste heat recovery by the Kalina cycle," Energy, Elsevier, vol. 119(C), pages 188-198.
    11. Aghaziarati, Zeinab & Aghdam, Abolfazl Hajizadeh, 2021. "Thermoeconomic analysis of a novel combined cooling, heating and power system based on solar organic Rankine cycle and cascade refrigeration cycle," Renewable Energy, Elsevier, vol. 164(C), pages 1267-1283.
    12. Mahdavi, Navid & Mojaver, Parisa & Khalilarya, Shahram, 2022. "Multi-objective optimization of power, CO2 emission and exergy efficiency of a novel solar-assisted CCHP system using RSM and TOPSIS coupled method," Renewable Energy, Elsevier, vol. 185(C), pages 506-524.
    13. Tianliang, Wang & Hong, Tan, 2023. "Thermodynamic and exergoeconomic analysis of an innovative cogeneration of power and freshwater based on gas turbine cycle," Energy, Elsevier, vol. 285(C).
    14. Mokarram, N. Hassani & Mosaffa, A.H., 2018. "A comparative study and optimization of enhanced integrated geothermal flash and Kalina cycles: A thermoeconomic assessment," Energy, Elsevier, vol. 162(C), pages 111-125.
    15. Bademlioglu, A.H. & Canbolat, A.S. & Kaynakli, O., 2020. "Multi-objective optimization of parameters affecting Organic Rankine Cycle performance characteristics with Taguchi-Grey Relational Analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    16. Gábor Györke & Axel Groniewsky & Attila R. Imre, 2019. "A Simple Method of Finding New Dry and Isentropic Working Fluids for Organic Rankine Cycle," Energies, MDPI, vol. 12(3), pages 1-11, February.
    17. Maheshwari, Mayank & Singh, Onkar, 2019. "Comparative evaluation of different combined cycle configurations having simple gas turbine, steam turbine and ammonia water turbine," Energy, Elsevier, vol. 168(C), pages 1217-1236.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Varma, G.V. Pradeep & Srinivas, T., 2017. "Power generation from low temperature heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 402-414.
    2. Ibrahim, Thamir K. & Mohammed, Mohammed Kamil & Awad, Omar I. & Abdalla, Ahmed N. & Basrawi, Firdaus & Mohammed, Marwah N. & Najafi, G. & Mamat, Rizalman, 2018. "A comprehensive review on the exergy analysis of combined cycle power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 835-850.
    3. Pan, Jie & Li, Mofan & Zhu, Min & Li, Ran & Tang, Linghong & Bai, Junhua, 2023. "Energy, exergy and economic analysis of different integrated systems for power generation using LNG cold energy and geothermal energy," Renewable Energy, Elsevier, vol. 202(C), pages 1054-1070.
    4. Gábor Györke & Axel Groniewsky & Attila R. Imre, 2019. "A Simple Method of Finding New Dry and Isentropic Working Fluids for Organic Rankine Cycle," Energies, MDPI, vol. 12(3), pages 1-11, February.
    5. Tang, Hao & Wu, Huagen & Wang, Xiaolin & Xing, Ziwen, 2015. "Performance study of a twin-screw expander used in a geothermal organic Rankine cycle power generator," Energy, Elsevier, vol. 90(P1), pages 631-642.
    6. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.
    7. Oko, C.O.C. & Njoku, I.H., 2017. "Performance analysis of an integrated gas-, steam- and organic fluid-cycle thermal power plant," Energy, Elsevier, vol. 122(C), pages 431-443.
    8. Nami, Hossein & Anvari-Moghaddam, Amjad, 2020. "Small-scale CCHP systems for waste heat recovery from cement plants: Thermodynamic, sustainability and economic implications," Energy, Elsevier, vol. 192(C).
    9. Magdalena Santos-Rodriguez, M. & Flores-Tlacuahuac, Antonio & Zavala, Victor M., 2017. "A stochastic optimization approach for the design of organic fluid mixtures for low-temperature heat recovery," Applied Energy, Elsevier, vol. 198(C), pages 145-159.
    10. Kajurek, Jakub & Rusowicz, Artur & Grzebielec, Andrzej & Bujalski, Wojciech & Futyma, Kamil & Rudowicz, Zbigniew, 2019. "Selection of refrigerants for a modified organic Rankine cycle," Energy, Elsevier, vol. 168(C), pages 1-8.
    11. Steven Lecompte & Oyeniyi A. Oyewunmi & Christos N. Markides & Marija Lazova & Alihan Kaya & Martijn Van den Broek & Michel De Paepe, 2017. "Case Study of an Organic Rankine Cycle (ORC) for Waste Heat Recovery from an Electric Arc Furnace (EAF)," Energies, MDPI, vol. 10(5), pages 1-16, May.
    12. Fu, Ben-Ran & Hsu, Sung-Wei & Liu, Chih-Hsi & Liu, Yu-Ching, 2014. "Statistical analysis of patent data relating to the organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 986-994.
    13. Xu, Jinliang & Yu, Chao, 2014. "Critical temperature criterion for selection of working fluids for subcritical pressure Organic Rankine cycles," Energy, Elsevier, vol. 74(C), pages 719-733.
    14. Eveloy, Valérie & Rodgers, Peter & Qiu, Linyue, 2016. "Performance investigation of a power, heating and seawater desalination poly-generation scheme in an off-shore oil field," Energy, Elsevier, vol. 98(C), pages 26-39.
    15. Moya, Diego & Aldás, Clay & Kaparaju, Prasad, 2018. "Geothermal energy: Power plant technology and direct heat applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 889-901.
    16. Ziviani, Davide & Beyene, Asfaw & Venturini, Mauro, 2014. "Advances and challenges in ORC systems modeling for low grade thermal energy recovery," Applied Energy, Elsevier, vol. 121(C), pages 79-95.
    17. Xu, Heng & Gao, Naiping & Zhu, Tong, 2016. "Investigation on the fluid selection and evaporation parametric optimization for sub- and supercritical organic Rankine cycle," Energy, Elsevier, vol. 96(C), pages 59-68.
    18. Le, Van Long & Feidt, Michel & Kheiri, Abdelhamid & Pelloux-Prayer, Sandrine, 2014. "Performance optimization of low-temperature power generation by supercritical ORCs (organic Rankine cycles) using low GWP (global warming potential) working fluids," Energy, Elsevier, vol. 67(C), pages 513-526.
    19. Wieland, Christoph & Meinel, Dominik & Eyerer, Sebastian & Spliethoff, Hartmut, 2016. "Innovative CHP concept for ORC and its benefit compared to conventional concepts," Applied Energy, Elsevier, vol. 183(C), pages 478-490.
    20. Lei, Biao & Wang, Wei & Wu, Yu-Ting & Ma, Chong-Fang & Wang, Jing-Fu & Zhang, Lei & Li, Chuang & Zhao, Ying-Kun & Zhi, Rui-Ping, 2016. "Development and experimental study on a single screw expander integrated into an Organic Rankine Cycle," Energy, Elsevier, vol. 116(P1), pages 43-52.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:79:y:2015:i:c:p:398-406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.