IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v64y2014icp961-969.html
   My bibliography  Save this article

Thermal analysis and modeling of surface heat exchangers operating in the transonic regime

Author

Listed:
  • Sousa, J.
  • Villafañe, L.
  • Paniagua, G.

Abstract

Surface coolers for tightly packed airbreathing propulsion are proposed to evacuate the heat loads from the lubrication circuit. This paper demonstrates the capability of integrated bypass-flow surface heat exchangers to cope with the high cooling demands from innovative engine architectures. The present publication describes the experimental and numerical methodology to model the thermal performance of a surface cooler within an aero-engine. Experiments were carried out in a dedicated facility that reproduced transonic engine conditions, allowing the determination of surface temperature distribution with infrared thermography. The thermal convective process was characterized by means of an ad-hoc three dimensional inverse heat conduction approach. An unprecedented energy model was then developed to analyze the sensitivity of the heat exchanger capacity to different engine operating conditions. The results indicate that the investigated concept may provide up to 76% of the estimated lubrication cooling requirements during take-off of a modern gas turbine power plant.

Suggested Citation

  • Sousa, J. & Villafañe, L. & Paniagua, G., 2014. "Thermal analysis and modeling of surface heat exchangers operating in the transonic regime," Energy, Elsevier, vol. 64(C), pages 961-969.
  • Handle: RePEc:eee:energy:v:64:y:2014:i:c:p:961-969
    DOI: 10.1016/j.energy.2013.11.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213009948
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.11.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Torabi, Mohsen & Aziz, Abdul & Zhang, Kaili, 2013. "A comparative study of longitudinal fins of rectangular, trapezoidal and concave parabolic profiles with multiple nonlinearities," Energy, Elsevier, vol. 51(C), pages 243-256.
    2. Qin, Jiang & Zhang, Silong & Bao, Wen & Zhou, Weixing & Yu, Daren, 2013. "Thermal management method of fuel in advanced aeroengines," Energy, Elsevier, vol. 49(C), pages 459-468.
    3. Naik, S. & Probert, S.D. & Shilston, M.J., 1987. "Forced-convective steady-state heat transfers from shrouded vertical fin arrays, aligned parallel to an undisturbed air-stream," Applied Energy, Elsevier, vol. 26(2), pages 137-158.
    4. Baus'Haq, R. F. & Probert, S. D. & Taylor, C. R., 1993. "Heat-transfer effectivenesses of shrouded, rectangular-fin arrays," Applied Energy, Elsevier, vol. 46(2), pages 99-112.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Silong & Cui, Naigang & Xiong, Yuefei & Feng, Yu & Qin, Jiang & Bao, Wen, 2017. "Effect of channel aspect ratio on chemical recuperation process in advanced aeroengines," Energy, Elsevier, vol. 123(C), pages 9-19.
    2. Qin, Jiang & Cheng, Kunlin & Zhang, Silong & Zhang, Duo & Bao, Wen & Han, Jiecai, 2016. "Analysis of energy cascade utilization in a chemically recuperated scramjet with indirect combustion," Energy, Elsevier, vol. 114(C), pages 1100-1106.
    3. Torabi, Mohsen & Zhang, Kaili & Yang, Guangcheng & Wang, Jun & Wu, Peng, 2014. "Temperature distribution, local and total entropy generation analyses in asymmetric cooling composite geometries with multiple nonlinearities: Effect of imperfect thermal contact," Energy, Elsevier, vol. 78(C), pages 218-234.
    4. Wang, Ke & Fan, Wei & Lu, Wei & Chen, Fan & Zhang, Qibin & Yan, Chuanjun, 2014. "Study on a liquid-fueled and valveless pulse detonation rocket engine without the purge process," Energy, Elsevier, vol. 71(C), pages 605-614.
    5. Kundu, Balaram & Lee, Kwan-Soo, 2014. "Analytical tools for calculating the maximum heat transfer of annular stepped fins with internal heat generation and radiation effects," Energy, Elsevier, vol. 76(C), pages 733-748.
    6. Loprete, Jason & Trojanowski, Rebecca & Butcher, Thomas & Longtin, Jon & Assanis, Dimitris, 2024. "Enabling residential heating decarbonization through hydronic low-temperature thermal distribution using forced-air assistive devices," Applied Energy, Elsevier, vol. 353(PA).
    7. Zhang, Silong & Qin, Jiang & Bao, Wen & Feng, Yu & Xie, Kaili, 2014. "Thermal management of fuel in advanced aeroengine in view of chemical recuperation," Energy, Elsevier, vol. 77(C), pages 201-211.
    8. Liu, Shuyuan & Han, Luyang & Cheng, Qunli & Wang, Peipei & Zhang, Yu & Li, Fengjiao & Liu, Linlin, 2023. "Thermal performance evaluation of a distributed regenerative cooling system using supercritical catalytic steam reforming of aviation kerosene for scramjet engine," Energy, Elsevier, vol. 282(C).
    9. Bao, Wen & Zhang, Silong & Qin, Jiang & Zhou, Weixing & Xie, Kaili, 2014. "Numerical analysis of flowing cracked hydrocarbon fuel inside cooling channels in view of thermal management," Energy, Elsevier, vol. 67(C), pages 149-161.
    10. Torabi, Mohsen & Zhang, Kaili, 2014. "Classical entropy generation analysis in cooled homogenous and functionally graded material slabs with variation of internal heat generation with temperature, and convective–radiative boundary conditi," Energy, Elsevier, vol. 65(C), pages 387-397.
    11. Torabi, Mohsen & Zhang, Kaili, 2014. "Temperature distribution and classical entropy generation analyses in an asymmetric cooling composite hollow cylinder with temperature-dependent thermal conductivity and internal heat generation," Energy, Elsevier, vol. 73(C), pages 484-496.
    12. Yang, Qingchun & Chang, Juntao & Bao, Wen, 2014. "Thermodynamic analysis on specific thrust of the hydrocarbon fueled scramjet," Energy, Elsevier, vol. 76(C), pages 552-558.
    13. P. V. Ananth Subray & B. N. Hanumagowda & S. V. K. Varma & A. M. Zidan & Mohammed Kbiri Alaoui & C. S. K. Raju & Nehad Ali Shah & Prem Junsawang, 2022. "Dynamics of Heat Transfer Analysis of Convective-Radiative Fins with Variable Thermal Conductivity and Heat Generation: Differential Transformation Method," Mathematics, MDPI, vol. 10(20), pages 1-15, October.
    14. Hsiao, Kai-Long, 2013. "Energy conversion conjugate conduction–convection and radiation over non-linearly extrusion stretching sheet with physical multimedia effects," Energy, Elsevier, vol. 59(C), pages 494-502.
    15. Saedodin, Seyfolah & Motaghedi Barforoush, Mohammad Sadegh, 2015. "Experimental and numerical investigations on enclosure pressure effects on radiation and convection heat losses from two finite concentric cylinders using two radiation shields," Energy, Elsevier, vol. 90(P1), pages 652-662.
    16. Uddin, Md. Jashim & Bég, O. Anwar & Uddin, Md. Nazir, 2016. "Energy conversion under conjugate conduction, magneto-convection, diffusion and nonlinear radiation over a non-linearly stretching sheet with slip and multiple convective boundary conditions," Energy, Elsevier, vol. 115(P1), pages 1119-1129.
    17. Xia, H.H. & Tang, G.H. & Shi, Y. & Tao, W.Q., 2014. "Simulation of heat transfer enhancement by longitudinal vortex generators in dimple heat exchangers," Energy, Elsevier, vol. 74(C), pages 27-36.
    18. Li, Xin & Zhang, Silong & Ye, Mai & Qin, Jiang & Bao, Wen & Cui, Naigang & Liu, Xiaoyong & Zhou, Chaoying, 2020. "Effect of enhanced heat transfer structures on the chemical recuperation process of advanced aero-engine," Energy, Elsevier, vol. 211(C).
    19. Liu, Penghua & Wang, Renting & Liu, Shaobei & Bao, Zewei, 2023. "Experimental study on the thermal-hydraulic performance of a tube-in-tube helical coil air–fuel heat exchanger for an aero-engine," Energy, Elsevier, vol. 267(C).
    20. Tian, Ke & Tang, Zicheng & Wang, Jin & Ma, Ting & Zeng, Min & Wang, Qiuwang, 2022. "Numerical investigation of pyrolysis and surface coking of hydrocarbon fuel in the regenerative cooling channel," Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:64:y:2014:i:c:p:961-969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.