IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i5p2753-2764.html
   My bibliography  Save this article

Thermo-economic analysis of solar thermal power cycles assisted MED-VC (multi effect distillation-vapor compression) desalination processes

Author

Listed:
  • Sharaf, M.A.
  • Nafey, A.S.
  • García-Rodríguez, Lourdes

Abstract

Solar power assisted different techniques of MED-VC (multi effect distillation-vapor compression) processes is thermo-economically analyzed and evaluated. In this work, two techniques of solar power cycles are considered to power on MED-PF-TVC, MVC (multi effect distillation thermal and mechanical vapor compressions). In the first technique, the developed solar thermal power is directly transmitted from the solar collector field via boiler heat exchanger unit toward the steam ejector of the MED-PF-TVC process. In the second technique, the electrical power generated from the SORC (Solar Organic Rankine Cycle) is used to power on the vapor compressor of the MED-PF-MVC process. The comparison is implemented according to the operation of PTC (parabolic trough collector) with Toluene organic oil and Water working fluids (2nd technique). Therminol-VP1 HTO (Heat Transfer Oil) is considered across the solar field and water is considered for boiler heat exchanger (1st technique). A case study is performed according to 4545 m3/day of distillate product. As a result, reducing the value of compression ratio with increasing the evaporator’s numbers would reduce the specific power consumption, solar field area, and thermo-economic costs. Also it is clear that the operation of steam ejector would increase the gain ratio instead of increasing the evaporator’s numbers.

Suggested Citation

  • Sharaf, M.A. & Nafey, A.S. & García-Rodríguez, Lourdes, 2011. "Thermo-economic analysis of solar thermal power cycles assisted MED-VC (multi effect distillation-vapor compression) desalination processes," Energy, Elsevier, vol. 36(5), pages 2753-2764.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:5:p:2753-2764
    DOI: 10.1016/j.energy.2011.02.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211000934
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.02.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:5:p:2753-2764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.